agenda vs bee-queue vs bree vs kue vs bull vs node-resque
Job and Queue Management
agendabee-queuebreekuebullnode-resqueSimilar Packages:
Job and Queue Management

Job and Queue Management Libraries in Node.js provide tools for handling background tasks, scheduling jobs, and managing queues of tasks to be processed asynchronously. These libraries help improve application performance by offloading time-consuming tasks from the main event loop, allowing for better scalability and responsiveness. They offer features like job prioritization, retries, scheduling, and monitoring, making them essential for building efficient and reliable applications that handle asynchronous processing. These libraries are particularly useful for tasks like sending emails, processing images, or performing data migrations without blocking the main application flow.

Npm Package Weekly Downloads Trend
3 Years
Github Stars Ranking
Stat Detail
Package
Downloads
Stars
Size
Issues
Publish
License
agenda143,4229,585353 kB355-MIT
bee-queue38,5273,996107 kB362 days agoMIT
bree31,6803,22090.4 kB29a day agoMIT
kue19,8309,457-2889 years agoMIT
bull016,191309 kB148a year agoMIT
node-resque01,405705 kB168 months agoApache-2.0
Feature Comparison: agenda vs bee-queue vs bree vs kue vs bull vs node-resque

Storage Backend

  • agenda:

    agenda uses MongoDB as its storage backend, which allows for persistent job storage, scheduling, and retrieval. This makes it suitable for applications that require long-term job storage and reliability, as jobs can be stored even if the application restarts.

  • bee-queue:

    bee-queue uses Redis as its storage backend, providing fast and ephemeral job storage. It is designed for low-latency job processing, making it ideal for applications that need quick job execution without the overhead of persistent storage.

  • bree:

    bree does not require any external storage backend, as it uses worker threads to execute jobs directly. This makes it lightweight and efficient for running jobs in memory, but it does not provide persistent job storage or queuing.

  • kue:

    kue uses Redis as its storage backend, providing persistent job storage with support for job prioritization and retries. It also includes a built-in UI for monitoring job progress, making it suitable for applications that need visual management of job queues.

  • bull:

    bull uses Redis as its storage backend, offering both persistent and ephemeral job storage. It provides advanced features like job retries, delayed jobs, and rate limiting, making it suitable for applications that require robust queue management and reliability.

  • node-resque:

    node-resque supports multiple storage backends, including Redis and MongoDB, allowing for flexible job storage options. It provides features like job scheduling, retries, and plugins, making it a versatile choice for applications that require a customizable queue system.

Job Scheduling

  • agenda:

    agenda supports advanced job scheduling, including recurring jobs, delayed jobs, and one-time jobs. It allows for flexible scheduling using cron-like syntax, making it suitable for applications that require complex scheduling capabilities.

  • bee-queue:

    bee-queue focuses on simple job queuing and does not provide built-in support for job scheduling. It is designed for fast, on-demand job processing rather than scheduled tasks.

  • bree:

    bree supports job scheduling using cron syntax, allowing for both one-time and recurring jobs. It leverages worker threads for executing scheduled jobs, providing better performance for CPU-intensive tasks.

  • kue:

    kue supports job scheduling with delayed jobs and prioritization. It allows for creating jobs with specific delay times and priority levels, making it suitable for applications that require controlled job execution.

  • bull:

    bull supports job scheduling, including delayed jobs and recurring jobs (with additional plugins). It provides a robust queuing mechanism with support for job prioritization and retries, making it suitable for complex job workflows.

  • node-resque:

    node-resque supports job scheduling, including delayed jobs and recurring jobs, through its flexible API. It allows for creating jobs with specified delays and supports custom scheduling logic, making it a versatile choice for time-based job execution.

UI and Monitoring

  • agenda:

    agenda does not provide a built-in UI for monitoring jobs, but it allows for integration with external monitoring tools. Developers can create custom dashboards to visualize job status and metrics using the data stored in MongoDB.

  • bee-queue:

    bee-queue provides a simple API for monitoring job status, but it does not include a built-in UI. Developers can create custom monitoring solutions using the provided API to track job progress and failures.

  • bree:

    bree does not include a built-in UI for monitoring jobs, but it provides detailed logging and event hooks that can be used to track job execution. Developers can integrate third-party monitoring tools for better visibility.

  • kue:

    kue includes a built-in UI for monitoring job queues, displaying job status, progress, and failure rates. The UI provides a visual representation of job queues, making it easy to manage and monitor jobs in real-time.

  • bull:

    bull does not provide a built-in UI for monitoring jobs, but it allows for integration with external monitoring tools. Developers can create custom dashboards to visualize job status and metrics using the data stored in Redis.

  • node-resque:

    node-resque does not provide a built-in UI, but it allows for integration with external monitoring tools. Developers can create custom dashboards to visualize job status and metrics using the data stored in the chosen backend.

Job Retries

  • agenda:

    agenda supports job retries in case of failure, allowing developers to configure retry logic and failure handling. It provides hooks for handling failed jobs and implementing custom retry strategies.

  • bee-queue:

    bee-queue supports job retries with configurable retry limits. It allows for automatic retries of failed jobs, making it suitable for handling transient errors in job processing.

  • bree:

    bree supports job retries through custom implementation, but it does not provide built-in retry functionality. Developers can implement their own retry logic using the provided job events and hooks.

  • kue:

    kue supports job retries with configurable retry limits and failure handling. It allows for automatic retries of failed jobs, making it suitable for handling errors and ensuring job completion.

  • bull:

    bull supports advanced job retries with configurable retry limits, backoff strategies, and failure handling. It provides robust support for handling failed jobs and implementing complex retry logic.

  • node-resque:

    node-resque supports job retries with configurable retry limits and backoff strategies. It provides flexible failure handling and allows for custom retry logic to be implemented.

Ease of Use: Code Examples

  • agenda:

    Simple Job Scheduling with agenda

    const Agenda = require('agenda');
    const mongoConnectionString = 'mongodb://localhost:27017/agenda';
    const agenda = new Agenda({ db: { address: mongoConnectionString } });
    
    // Define a job
    agenda.define('send email', async (job) => {
      console.log('Sending email...');
    });
    
    // Schedule a job
    agenda.schedule('in 10 seconds', 'send email');
    
    // Start the agenda
    agenda.start();
    
  • bee-queue:

    Simple Job Queue with bee-queue

    const Queue = require('bee-queue');
    const queue = new Queue('my-queue');
    
    // Process jobs
    queue.process(async (job) => {
      console.log(`Processing job ${job.id}`);
    });
    
    // Add a job to the queue
    queue.createJob({ data: 'my data' }).save();
    
  • bree:

    Simple Job Scheduling with bree

    const Bree = require('bree');
    const bree = new Bree({
      jobs: [{
        name: 'my-job',
        interval: '10s',
      }],
    });
    
    // Start the scheduler
    bree.start();
    
  • kue:

    Simple Job Queue with kue

    const kue = require('kue');
    const queue = kue.createQueue();
    
    // Create a job
    const job = queue.create('email', { to: 'example@example.com' }).save();
    
    // Process the job
    queue.process('email', (job, done) => {
      console.log(`Sending email to ${job.data.to}`);
      done();
    });
    
  • bull:

    Simple Job Queue with bull

    const Queue = require('bull');
    const myQueue = new Queue('my-queue');
    
    // Process jobs
    myQueue.process(async (job) => {
      console.log(`Processing job ${job.id}`);
    });
    
    // Add a job to the queue
    myQueue.add({ data: 'my data' });
    
  • node-resque:

    Simple Job Queue with node-resque

    const { Queue, Worker } = require('node-resque');
    const queue = new Queue({
      myQueue: { jobs: ['myJob'] },
    });
    const worker = new Worker({ queue });
    
    // Define a job
    worker.on('myJob', (job, done) => {
      console.log(`Processing job ${job.id}`);
      done();
    });
    
    // Start the worker
    worker.start();
    
How to Choose: agenda vs bee-queue vs bree vs kue vs bull vs node-resque
  • agenda:

    Choose agenda if you need a job scheduler with MongoDB integration that supports recurring jobs, delayed jobs, and job prioritization. It is ideal for applications that require flexible scheduling and persistence of job states.

  • bee-queue:

    Choose bee-queue if you need a simple and lightweight queue system with Redis support, focusing on performance and low latency. It is suitable for applications that require fast job processing with minimal overhead.

  • bree:

    Choose bree if you want a modern job scheduler that uses worker threads for executing jobs, providing better performance and resource utilization. It is ideal for applications that need to run CPU-intensive tasks without blocking the event loop.

  • kue:

    Choose kue if you need a priority job queue backed by Redis with a built-in UI for monitoring jobs. It is ideal for applications that require visual monitoring and management of job queues.

  • bull:

    Choose bull if you need a feature-rich queue system with Redis support that offers advanced features like job retries, rate limiting, and delayed jobs. It is suitable for applications that require robust queue management and scalability.

  • node-resque:

    Choose node-resque if you need a flexible and extensible job queue system that supports multiple backends (Redis, MongoDB, etc.) and provides features like job scheduling, retries, and plugins. It is suitable for applications that require a highly customizable queue system.

README for agenda

Agenda

A light-weight job scheduling library for Node.js

Agenda offers

  • Minimal overhead. Agenda aims to keep its code base small.
  • Mongo backed persistence layer.
  • Promises based API.
  • Scheduling with configurable priority, concurrency, repeating and persistence of job results.
  • Scheduling via cron or human readable syntax.
  • Event backed job queue that you can hook into.
  • Agenda-rest: optional standalone REST API.
  • Inversify-agenda - Some utilities for the development of agenda workers with Inversify.
  • Agendash: optional standalone web-interface.

Feature Comparison

Since there are a few job queue solutions, here a table comparing them to help you use the one that better suits your needs.

Agenda is great if you need a MongoDB job scheduler, but try Bree if you need something simpler (built by a previous maintainer).

FeatureBullBeeAgenda
Backendredisredismongo
Priorities
Concurrency
Delayed jobs
Global events
Rate Limiter
Pause/Resume
Sandboxed worker
Repeatable jobs
Atomic ops
Persistence
UI
REST API
Optimized forJobs / MessagesMessagesJobs

Kudos for making the comparison chart goes to Bull maintainers.

Installation

Install via NPM

npm install agenda

You will also need a working Mongo database (v3) to point it to.

CJS / Module Imports

for regular javascript code, just use the default entrypoint

const Agenda = require("agenda");

For Typescript, Webpack or other module imports, use agenda/es entrypoint: e.g.

import Agenda, { Job, JobAttributesData } from 'agenda'

const mongoConnectionString = "mongodb://127.0.0.1/agenda";
const agenda = new Agenda({ db: { address: mongoConnectionString } });

interface CreateContact extends JobAttributesData {
  contactDetails: Contact // app-specific type
}

agenda.define<CreateContact>('CREATE CONTACT', async (job: Job<CreateContact>) => {
  const contactDetails = job.attrs.data.contactDetails; // type Contact
})

agenda.now<CreateContact>('CREATE CONTACT', {
  contactDetails: {...} // required attr
})

agenda.schedule<CreateContact>('in 5 minutes', 'CREATE CONTACT', {
  contactDetails: {...} // required attr
})

Example Usage

const mongoConnectionString = "mongodb://127.0.0.1/agenda";

const agenda = new Agenda({ db: { address: mongoConnectionString } });

// Or override the default collection name:
// const agenda = new Agenda({db: {address: mongoConnectionString, collection: 'jobCollectionName'}});

// or pass additional connection options:
// const agenda = new Agenda({db: {address: mongoConnectionString, collection: 'jobCollectionName', options: {ssl: true}}});

// or pass in an existing mongodb-native MongoClient instance
// const agenda = new Agenda({mongo: myMongoClient});

agenda.define("delete old users", async (job) => {
  await User.remove({ lastLogIn: { $lt: twoDaysAgo } });
});

(async function () {
  // IIFE to give access to async/await
  await agenda.start();

  await agenda.every("3 minutes", "delete old users");

  // Alternatively, you could also do:
  await agenda.every("*/3 * * * *", "delete old users");
})();
agenda.define(
  "send email report",
  { priority: "high", concurrency: 10 },
  async (job) => {
    const { to } = job.attrs.data;
    await emailClient.send({
      to,
      from: "example@example.com",
      subject: "Email Report",
      body: "...",
    });
  }
);

(async function () {
  await agenda.start();
  await agenda.schedule("in 20 minutes", "send email report", {
    to: "admin@example.com",
  });
})();
(async function () {
  const weeklyReport = agenda.create("send email report", {
    to: "example@example.com",
  });
  await agenda.start();
  await weeklyReport.repeatEvery("1 week").save();
})();

Full documentation

Agenda's basic control structure is an instance of an agenda. Agenda's are mapped to a database collection and load the jobs from within.

Table of Contents

Configuring an agenda

All configuration methods are chainable, meaning you can do something like:

const agenda = new Agenda();
agenda
  .database(...)
  .processEvery('3 minutes')
  ...;

Agenda uses Human Interval for specifying the intervals. It supports the following units:

seconds, minutes, hours, days,weeks, months -- assumes 30 days, years -- assumes 365 days

More sophisticated examples

agenda.processEvery("one minute");
agenda.processEvery("1.5 minutes");
agenda.processEvery("3 days and 4 hours");
agenda.processEvery("3 days, 4 hours and 36 seconds");

database(url, [collectionName])

Specifies the database at the url specified. If no collection name is given, agendaJobs is used.

agenda.database("localhost:27017/agenda-test", "agendaJobs");

You can also specify it during instantiation.

const agenda = new Agenda({
  db: { address: "localhost:27017/agenda-test", collection: "agendaJobs" },
});

Agenda will emit a ready event (see Agenda Events) when properly connected to the database. It is safe to call agenda.start() without waiting for this event, as this is handled internally. If you're using the db options, or call database, then you may still need to listen for ready before saving jobs.

mongo(dbInstance)

Use an existing mongodb-native MongoClient/Db instance. This can help consolidate connections to a database. You can instead use .database to have agenda handle connecting for you.

You can also specify it during instantiation:

const agenda = new Agenda({ mongo: mongoClientInstance.db("agenda-test") });

Note that MongoClient.connect() returns a mongoClientInstance since node-mongodb-native 3.0.0, while it used to return a dbInstance that could then be directly passed to agenda.

name(name)

Sets the lastModifiedBy field to name in the jobs collection. Useful if you have multiple job processors (agendas) and want to see which job queue last ran the job.

agenda.name(os.hostname + "-" + process.pid);

You can also specify it during instantiation

const agenda = new Agenda({ name: "test queue" });

processEvery(interval)

Takes a string interval which can be either a traditional javascript number, or a string such as 3 minutes

Specifies the frequency at which agenda will query the database looking for jobs that need to be processed. Agenda internally uses setTimeout to guarantee that jobs run at (close to ~3ms) the right time.

Decreasing the frequency will result in fewer database queries, but more jobs being stored in memory.

Also worth noting is that if the job queue is shutdown, any jobs stored in memory that haven't run will still be locked, meaning that you may have to wait for the lock to expire. By default it is '5 seconds'.

agenda.processEvery("1 minute");

You can also specify it during instantiation

const agenda = new Agenda({ processEvery: "30 seconds" });

maxConcurrency(number)

Takes a number which specifies the max number of jobs that can be running at any given moment. By default it is 20.

agenda.maxConcurrency(20);

You can also specify it during instantiation

const agenda = new Agenda({ maxConcurrency: 20 });

defaultConcurrency(number)

Takes a number which specifies the default number of a specific job that can be running at any given moment. By default it is 5.

agenda.defaultConcurrency(5);

You can also specify it during instantiation

const agenda = new Agenda({ defaultConcurrency: 5 });

lockLimit(number)

Takes a number which specifies the max number jobs that can be locked at any given moment. By default it is 0 for no max.

agenda.lockLimit(0);

You can also specify it during instantiation

const agenda = new Agenda({ lockLimit: 0 });

defaultLockLimit(number)

Takes a number which specifies the default number of a specific job that can be locked at any given moment. By default it is 0 for no max.

agenda.defaultLockLimit(0);

You can also specify it during instantiation

const agenda = new Agenda({ defaultLockLimit: 0 });

defaultLockLifetime(number)

Takes a number which specifies the default lock lifetime in milliseconds. By default it is 10 minutes. This can be overridden by specifying the lockLifetime option to a defined job.

A job will unlock if it is finished (ie. the returned Promise resolves/rejects or done is specified in the params and done() is called) before the lockLifetime. The lock is useful if the job crashes or times out.

agenda.defaultLockLifetime(10000);

You can also specify it during instantiation

const agenda = new Agenda({ defaultLockLifetime: 10000 });

sort(query)

Takes a query which specifies the sort query to be used for finding and locking the next job.

By default it is { nextRunAt: 1, priority: -1 }, which obeys a first in first out approach, with respect to priority.

disableAutoIndex(boolean)

Optional. Disables the automatic creation of the default index on the jobs table. By default, Agenda creates an index to optimize its queries against Mongo while processing jobs.

This is useful if you want to use your own index in specific use-cases.

Agenda Events

An instance of an agenda will emit the following events:

  • ready - called when Agenda mongo connection is successfully opened and indices created. If you're passing agenda an existing connection, you shouldn't need to listen for this, as agenda.start() will not resolve until indices have been created. If you're using the db options, or call database, then you may still need to listen for the ready event before saving jobs. agenda.start() will still wait for the connection to be opened.
  • error - called when Agenda mongo connection process has thrown an error
await agenda.start();

Defining Job Processors

Before you can use a job, you must define its processing behavior.

define(jobName, [options], handler)

Defines a job with the name of jobName. When a job of jobName gets run, it will be passed to handler(job, done). To maintain asynchronous behavior, you may either provide a Promise-returning function in handler or provide done as a second parameter to handler. If done is specified in the function signature, you must call done() when you are processing the job. If your function is synchronous or returns a Promise, you may omit done from the signature.

options is an optional argument which can overwrite the defaults. It can take the following:

  • concurrency: number maximum number of that job that can be running at once (per instance of agenda)
  • lockLimit: number maximum number of that job that can be locked at once (per instance of agenda)
  • lockLifetime: number interval in ms of how long the job stays locked for (see multiple job processors for more info). A job will automatically unlock once a returned promise resolves/rejects (or if done is specified in the signature and done() is called).
  • priority: (lowest|low|normal|high|highest|number) specifies the priority of the job. Higher priority jobs will run first. See the priority mapping below
  • shouldSaveResult: boolean flag that specifies whether the result of the job should also be stored in the database. Defaults to false

Priority mapping:

{
  highest: 20,
  high: 10,
  normal: 0,
  low: -10,
  lowest: -20
}

Async Job:

agenda.define("some long running job", async (job) => {
  const data = await doSomelengthyTask();
  await formatThatData(data);
  await sendThatData(data);
});

Async Job (using done):

agenda.define("some long running job", (job, done) => {
  doSomelengthyTask((data) => {
    formatThatData(data);
    sendThatData(data);
    done();
  });
});

Sync Job:

agenda.define("say hello", (job) => {
  console.log("Hello!");
});

define() acts like an assignment: if define(jobName, ...) is called multiple times (e.g. every time your script starts), the definition in the last call will overwrite the previous one. Thus, if you define the jobName only once in your code, it's safe for that call to execute multiple times.

Creating Jobs

every(interval, name, [data], [options])

Runs job name at the given interval. Optionally, data and options can be passed in. Every creates a job of type single, which means that it will only create one job in the database, even if that line is run multiple times. This lets you put it in a file that may get run multiple times, such as webserver.js which may reboot from time to time.

interval can be a human-readable format String, a cron format String, or a Number.

data is an optional argument that will be passed to the processing function under job.attrs.data.

options is an optional argument that will be passed to job.repeatEvery. In order to use this argument, data must also be specified.

Returns the job.

agenda.define("printAnalyticsReport", async (job) => {
  const users = await User.doSomethingReallyIntensive();
  processUserData(users);
  console.log("I print a report!");
});

agenda.every("15 minutes", "printAnalyticsReport");

Optionally, name could be array of job names, which is convenient for scheduling different jobs for same interval.

agenda.every("15 minutes", [
  "printAnalyticsReport",
  "sendNotifications",
  "updateUserRecords",
]);

In this case, every returns array of jobs.

schedule(when, name, [data])

Schedules a job to run name once at a given time. when can be a Date or a String such as tomorrow at 5pm.

data is an optional argument that will be passed to the processing function under job.attrs.data.

Returns the job.

agenda.schedule("tomorrow at noon", "printAnalyticsReport", { userCount: 100 });

Optionally, name could be array of job names, similar to the every method.

agenda.schedule("tomorrow at noon", [
  "printAnalyticsReport",
  "sendNotifications",
  "updateUserRecords",
]);

In this case, schedule returns array of jobs.

now(name, [data])

Schedules a job to run name once immediately.

data is an optional argument that will be passed to the processing function under job.attrs.data.

Returns the job.

agenda.now("do the hokey pokey");

create(jobName, data)

Returns an instance of a jobName with data. This does NOT save the job in the database. See below to learn how to manually work with jobs.

const job = agenda.create("printAnalyticsReport", { userCount: 100 });
await job.save();
console.log("Job successfully saved");

Managing Jobs

jobs(mongodb-native query, mongodb-native sort, mongodb-native limit, mongodb-native skip)

Lets you query (then sort, limit and skip the result) all of the jobs in the agenda job's database. These are full mongodb-native find, sort, limit and skip commands. See mongodb-native's documentation for details.

const jobs = await agenda.jobs(
  { name: "printAnalyticsReport" },
  { data: -1 },
  3,
  1
);
// Work with jobs (see below)

cancel(mongodb-native query)

Cancels any jobs matching the passed mongodb-native query, and removes them from the database. Returns a Promise resolving to the number of cancelled jobs, or rejecting on error.

const numRemoved = await agenda.cancel({ name: "printAnalyticsReport" });

This functionality can also be achieved by first retrieving all the jobs from the database using agenda.jobs(), looping through the resulting array and calling job.remove() on each. It is however preferable to use agenda.cancel() for this use case, as this ensures the operation is atomic.

disable(mongodb-native query)

Disables any jobs matching the passed mongodb-native query, preventing any matching jobs from being run by the Job Processor.

const numDisabled = await agenda.disable({ name: "pollExternalService" });

Similar to agenda.cancel(), this functionality can be acheived with a combination of agenda.jobs() and job.disable()

enable(mongodb-native query)

Enables any jobs matching the passed mongodb-native query, allowing any matching jobs to be run by the Job Processor.

const numEnabled = await agenda.enable({ name: "pollExternalService" });

Similar to agenda.cancel(), this functionality can be acheived with a combination of agenda.jobs() and job.enable()

purge()

Removes all jobs in the database without defined behaviors. Useful if you change a definition name and want to remove old jobs. Returns a Promise resolving to the number of removed jobs, or rejecting on error.

IMPORTANT: Do not run this before you finish defining all of your jobs. If you do, you will nuke your database of jobs.

const numRemoved = await agenda.purge();

Starting the job processor

To get agenda to start processing jobs from the database you must start it. This will schedule an interval (based on processEvery) to check for new jobs and run them. You can also stop the queue.

start

Starts the job queue processing, checking processEvery time to see if there are new jobs. Must be called after processEvery, and before any job scheduling (e.g. every).

stop

Stops the job queue processing. Unlocks currently running jobs.

This can be very useful for graceful shutdowns so that currently running/grabbed jobs are abandoned so that other job queues can grab them / they are unlocked should the job queue start again. Here is an example of how to do a graceful shutdown.

async function graceful() {
  await agenda.stop();
  process.exit(0);
}

process.on("SIGTERM", graceful);
process.on("SIGINT", graceful);

drain

Stops the job queue processing and waits till all current jobs finishes.

This can be very useful for graceful shutdowns so that currently running/grabbed jobs are finished before shutting down. Here is an example of how to do a graceful shutdown.

async function graceful() {
  await agenda.drain();
  process.exit(0);
}

process.on("SIGTERM", graceful);
process.on("SIGINT", graceful);

close(force)

Closes database connection. You don't normally have to do this, but it might be useful for testing purposes.

Using force boolean you can force close connection.

Read more from Node.js MongoDB Driver API

await agenda.close({ force: true });

Multiple job processors

Sometimes you may want to have multiple node instances / machines process from the same queue. Agenda supports a locking mechanism to ensure that multiple queues don't process the same job.

You can configure the locking mechanism by specifying lockLifetime as an interval when defining the job.

agenda.define("someJob", { lockLifetime: 10000 }, (job, cb) => {
  // Do something in 10 seconds or less...
});

This will ensure that no other job processor (this one included) attempts to run the job again for the next 10 seconds. If you have a particularly long running job, you will want to specify a longer lockLifetime.

By default it is 10 minutes. Typically you shouldn't have a job that runs for 10 minutes, so this is really insurance should the job queue crash before the job is unlocked.

When a job is finished (i.e. the returned promise resolves/rejects or done is specified in the signature and done() is called), it will automatically unlock.

Manually working with a job

A job instance has many instance methods. All mutating methods must be followed with a call to await job.save() in order to persist the changes to the database.

repeatEvery(interval, [options])

Specifies an interval on which the job should repeat. The job runs at the time of defining as well in configured intervals, that is "run now and in intervals".

interval can be a human-readable format String, a cron format String, or a Number.

options is an optional argument containing:

options.timezone: should be a string as accepted by moment-timezone and is considered when using an interval in the cron string format.

options.skipImmediate: true | false (default) Setting this true will skip the immediate run. The first run will occur only in configured interval.

options.startDate: Date the first time the job runs, should be equal or after the start date.

options.endDate: Date the job should not repeat after the endDate. The job can run on the end-date itself, but not after that.

options.skipDays: human readable string ('2 days'). After each run, it will skip the duration of 'skipDays'

job.repeatEvery("10 minutes");
await job.save();
job.repeatEvery("3 minutes", {
  skipImmediate: true,
});
await job.save();
job.repeatEvery("0 6 * * *", {
  timezone: "America/New_York",
});
await job.save();

repeatAt(time)

Specifies a time when the job should repeat. Possible values

job.repeatAt("3:30pm");
await job.save();

schedule(time)

Specifies the next time at which the job should run.

job.schedule("tomorrow at 6pm");
await job.save();

priority(priority)

Specifies the priority weighting of the job. Can be a number or a string from the above priority table.

job.priority("low");
await job.save();

setShouldSaveResult(setShouldSaveResult)

Specifies whether the result of the job should also be stored in the database. Defaults to false.

job.setShouldSaveResult(true);
await job.save();

The data returned by the job will be available on the result attribute after it succeeded and got retrieved again from the database, e.g. via agenda.jobs(...) or through the success job event).

unique(properties, [options])

Ensure that only one instance of this job exists with the specified properties

options is an optional argument which can overwrite the defaults. It can take the following:

  • insertOnly: boolean will prevent any properties from persisting if the job already exists. Defaults to false.
job.unique({ "data.type": "active", "data.userId": "123", nextRunAt: date });
await job.save();

IMPORTANT: To guarantee uniqueness as well as avoid high CPU usage by MongoDB make sure to create a unique index on the used fields, like name, data.type and data.userId for the example above.

fail(reason)

Sets job.attrs.failedAt to now, and sets job.attrs.failReason to reason.

Optionally, reason can be an error, in which case job.attrs.failReason will be set to error.message

job.fail("insufficient disk space");
// or
job.fail(new Error("insufficient disk space"));
await job.save();

run(callback)

Runs the given job and calls callback(err, job) upon completion. Normally you never need to call this manually.

job.run((err, job) => {
  console.log("I don't know why you would need to do this...");
});

save()

Saves the job.attrs into the database. Returns a Promise resolving to a Job instance, or rejecting on error.

try {
  await job.save();
  console.log("Successfully saved job to collection");
} catch (e) {
  console.error("Error saving job to collection");
}

remove()

Removes the job from the database. Returns a Promise resolving to the number of jobs removed, or rejecting on error.

try {
  await job.remove();
  console.log("Successfully removed job from collection");
} catch (e) {
  console.error("Error removing job from collection");
}

disable()

Disables the job. Upcoming runs won't execute.

enable()

Enables the job if it got disabled before. Upcoming runs will execute.

touch()

Resets the lock on the job. Useful to indicate that the job hasn't timed out when you have very long running jobs. The call returns a promise that resolves when the job's lock has been renewed.

agenda.define("super long job", async (job) => {
  await doSomeLongTask();
  await job.touch();
  await doAnotherLongTask();
  await job.touch();
  await finishOurLongTasks();
});

Job Queue Events

An instance of an agenda will emit the following events:

  • start - called just before a job starts
  • start:job name - called just before the specified job starts
agenda.on("start", (job) => {
  console.log("Job %s starting", job.attrs.name);
});
  • complete - called when a job finishes, regardless of if it succeeds or fails
  • complete:job name - called when a job finishes, regardless of if it succeeds or fails
agenda.on("complete", (job) => {
  console.log(`Job ${job.attrs.name} finished`);
});
  • success - called when a job finishes successfully
  • success:job name - called when a job finishes successfully
agenda.on("success:send email", (job) => {
  console.log(`Sent Email Successfully to ${job.attrs.data.to}`);
});
  • fail - called when a job throws an error
  • fail:job name - called when a job throws an error
agenda.on("fail:send email", (err, job) => {
  console.log(`Job failed with error: ${err.message}`);
});

Frequently Asked Questions

What is the order in which jobs run?

Jobs are run with priority in a first in first out order (so they will be run in the order they were scheduled AND with respect to highest priority).

For example, if we have two jobs named "send-email" queued (both with the same priority), and the first job is queued at 3:00 PM and second job is queued at 3:05 PM with the same priority value, then the first job will run first if we start to send "send-email" jobs at 3:10 PM. However if the first job has a priority of 5 and the second job has a priority of 10, then the second will run first (priority takes precedence) at 3:10 PM.

The default MongoDB sort object is { nextRunAt: 1, priority: -1 } and can be changed through the option sort when configuring Agenda.

What is the difference between lockLimit and maxConcurrency?

Agenda will lock jobs 1 by one, setting the lockedAt property in mongoDB, and creating an instance of the Job class which it caches into the _lockedJobs array. This defaults to having no limit, but can be managed using lockLimit. If all jobs will need to be run before agenda's next interval (set via agenda.processEvery), then agenda will attempt to lock all jobs.

Agenda will also pull jobs from _lockedJobs and into _runningJobs. These jobs are actively being worked on by user code, and this is limited by maxConcurrency (defaults to 20).

If you have multiple instances of agenda processing the same job definition with a fast repeat time you may find they get unevenly loaded. This is because they will compete to lock as many jobs as possible, even if they don't have enough concurrency to process them. This can be resolved by tweaking the maxConcurrency and lockLimit properties.

Sample Project Structure?

Agenda doesn't have a preferred project structure and leaves it to the user to choose how they would like to use it. That being said, you can check out the example project structure below.

Can I Donate?

Thanks! I'm flattered, but it's really not necessary. If you really want to, you can find my gittip here.

Web Interface?

Agenda itself does not have a web interface built in but we do offer stand-alone web interface Agendash:

Agendash interface

Mongo vs Redis

The decision to use Mongo instead of Redis is intentional. Redis is often used for non-essential data (such as sessions) and without configuration doesn't guarantee the same level of persistence as Mongo (should the server need to be restarted/crash).

Agenda decides to focus on persistence without requiring special configuration of Redis (thereby degrading the performance of the Redis server on non-critical data, such as sessions).

Ultimately if enough people want a Redis driver instead of Mongo, I will write one. (Please open an issue requesting it). For now, Agenda decided to focus on guaranteed persistence.

Spawning / forking processes

Ultimately Agenda can work from a single job queue across multiple machines, node processes, or forks. If you are interested in having more than one worker, Bars3s has written up a fantastic example of how one might do it:

const cluster = require("cluster");
const os = require("os");

const httpServer = require("./app/http-server");
const jobWorker = require("./app/job-worker");

const jobWorkers = [];
const webWorkers = [];

if (cluster.isMaster) {
  const cpuCount = os.cpus().length;
  // Create a worker for each CPU
  for (let i = 0; i < cpuCount; i += 1) {
    addJobWorker();
    addWebWorker();
  }

  cluster.on("exit", (worker, code, signal) => {
    if (jobWorkers.indexOf(worker.id) !== -1) {
      console.log(
        `job worker ${worker.process.pid} exited (signal: ${signal}). Trying to respawn...`
      );
      removeJobWorker(worker.id);
      addJobWorker();
    }

    if (webWorkers.indexOf(worker.id) !== -1) {
      console.log(
        `http worker ${worker.process.pid} exited (signal: ${signal}). Trying to respawn...`
      );
      removeWebWorker(worker.id);
      addWebWorker();
    }
  });
} else {
  if (process.env.web) {
    console.log(`start http server: ${cluster.worker.id}`);
    // Initialize the http server here
    httpServer.start();
  }

  if (process.env.job) {
    console.log(`start job server: ${cluster.worker.id}`);
    // Initialize the Agenda here
    jobWorker.start();
  }
}

function addWebWorker() {
  webWorkers.push(cluster.fork({ web: 1 }).id);
}

function addJobWorker() {
  jobWorkers.push(cluster.fork({ job: 1 }).id);
}

function removeWebWorker(id) {
  webWorkers.splice(webWorkers.indexOf(id), 1);
}

function removeJobWorker(id) {
  jobWorkers.splice(jobWorkers.indexOf(id), 1);
}

Recovering lost Mongo connections ("auto_reconnect")

Agenda is configured by default to automatically reconnect indefinitely, emitting an error event when no connection is available on each process tick, allowing you to restore the Mongo instance without having to restart the application.

However, if you are using an existing Mongo client you'll need to configure the reconnectTries and reconnectInterval connection settings manually, otherwise you'll find that Agenda will throw an error with the message "MongoDB connection is not recoverable, application restart required" if the connection cannot be recovered within 30 seconds.

Example Project Structure

Agenda will only process jobs that it has definitions for. This allows you to selectively choose which jobs a given agenda will process.

Consider the following project structure, which allows us to share models with the rest of our code base, and specify which jobs a worker processes, if any at all.

- server.js
- worker.js
lib/
  - agenda.js
  controllers/
    - user-controller.js
  jobs/
    - email.js
    - video-processing.js
    - image-processing.js
   models/
     - user-model.js
     - blog-post.model.js

Sample job processor (eg. jobs/email.js)

let email = require("some-email-lib"),
  User = require("../models/user-model.js");

module.exports = function (agenda) {
  agenda.define("registration email", async (job) => {
    const user = await User.get(job.attrs.data.userId);
    await email(
      user.email(),
      "Thanks for registering",
      "Thanks for registering " + user.name()
    );
  });

  agenda.define("reset password", async (job) => {
    // Etc
  });

  // More email related jobs
};

lib/agenda.js

const Agenda = require("agenda");

const connectionOpts = {
  db: { address: "localhost:27017/agenda-test", collection: "agendaJobs" },
};

const agenda = new Agenda(connectionOpts);

const jobTypes = process.env.JOB_TYPES ? process.env.JOB_TYPES.split(",") : [];

jobTypes.forEach((type) => {
  require("./jobs/" + type)(agenda);
});

if (jobTypes.length) {
  agenda.start(); // Returns a promise, which should be handled appropriately
}

module.exports = agenda;

lib/controllers/user-controller.js

let app = express(),
  User = require("../models/user-model"),
  agenda = require("../worker.js");

app.post("/users", (req, res, next) => {
  const user = new User(req.body);
  user.save((err) => {
    if (err) {
      return next(err);
    }
    agenda.now("registration email", { userId: user.primary() });
    res.send(201, user.toJson());
  });
});

worker.js

require("./lib/agenda.js");

Now you can do the following in your project:

node server.js

Fire up an instance with no JOB_TYPES, giving you the ability to process jobs, but not wasting resources processing jobs.

JOB_TYPES=email node server.js

Allow your http server to process email jobs.

JOB_TYPES=email node worker.js

Fire up an instance that processes email jobs.

JOB_TYPES=video-processing,image-processing node worker.js

Fire up an instance that processes video-processing/image-processing jobs. Good for a heavy hitting server.

Debugging Issues

If you think you have encountered a bug, please feel free to report it here:

Submit Issue

Please provide us with as much details as possible such as:

  • Agenda version
  • Environment (OSX, Linux, Windows, etc)
  • Small description of what happened
  • Any relevant stack track
  • Agenda logs (see below)

To turn on logging, please set your DEBUG env variable like so:

  • OSX: DEBUG="agenda:*" ts-node src/index.js
  • Linux: DEBUG="agenda:*" ts-node src/index.js
  • Windows CMD: set DEBUG=agenda:*
  • Windows PowerShell: $env:DEBUG = "agenda:*"

While not necessary, attaching a text file with this debug information would be extremely useful in debugging certain issues and is encouraged.

Known Issues

"Multiple order-by items are not supported. Please specify a single order-by item."

When running Agenda on Azure cosmosDB, you might run into this issue caused by Agenda's sort query used for finding and locking the next job. To fix this, you can pass custom sort option: sort: { nextRunAt: 1 }

Acknowledgements

License

The MIT License