node-fetch vs axios vs got vs request vs ky
HTTP Client Libraries for Node.js Comparison
1 Year
node-fetchaxiosgotrequestkySimilar Packages:
What's HTTP Client Libraries for Node.js?

HTTP client libraries are essential tools in web development that facilitate making HTTP requests to servers, handling responses, and managing various aspects of network communication. These libraries simplify the process of fetching data from APIs or sending data to servers, making it easier for developers to build applications that interact with external services. Each library offers unique features, performance characteristics, and design philosophies, allowing developers to choose the one that best fits their project's needs.

Package Weekly Downloads Trend
Github Stars Ranking
Stat Detail
Package
Downloads
Stars
Size
Issues
Publish
License
node-fetch61,187,2418,832107 kB2142 years agoMIT
axios59,317,329106,4052.14 MB6723 days agoMIT
got22,175,68014,484242 kB12819 days agoMIT
request13,294,42425,680-1355 years agoApache-2.0
ky2,398,74414,376158 kB5517 days agoMIT
Feature Comparison: node-fetch vs axios vs got vs request vs ky

Promise Support

  • node-fetch:

    Node-fetch implements the Fetch API, which is promise-based, allowing developers to use async/await for handling requests. It provides a familiar interface for those who have used Fetch in the browser.

  • axios:

    Axios is built on promises, allowing for a clean and straightforward way to handle asynchronous requests. It supports async/await syntax, making it easy to write and read code that deals with HTTP requests.

  • got:

    Got is also promise-based and fully supports async/await, providing a modern approach to handling HTTP requests in Node.js applications. Its API is designed to be intuitive and easy to use with promises.

  • request:

    Request does not natively support promises but can be used with libraries like bluebird to convert its callback-based API into a promise-based one. However, its callback style is less modern compared to the other libraries.

  • ky:

    Ky is designed with modern JavaScript in mind, utilizing promises and async/await for a seamless experience when making HTTP requests. Its API is minimalistic and user-friendly.

Features and Extensibility

  • node-fetch:

    Node-fetch is minimalistic and closely follows the Fetch API, which means it lacks some advanced features out of the box. However, it can be extended with additional libraries or custom code to meet specific needs.

  • axios:

    Axios provides a rich set of features, including request and response interceptors, automatic JSON transformation, and the ability to cancel requests. It is highly extensible, allowing developers to customize its behavior easily.

  • got:

    Got offers advanced features like retries, hooks, and streams, making it highly extensible for complex HTTP interactions. It is designed to handle various scenarios, such as timeouts and redirects, with ease.

  • request:

    Request is feature-rich, supporting a wide variety of options for HTTP requests, including form submissions and multipart uploads. However, its extensibility is limited compared to more modern libraries.

  • ky:

    Ky is lightweight and focuses on simplicity, but it still provides essential features like retries and timeouts. Its design encourages extensibility through middleware-like hooks, allowing developers to enhance its functionality without bloating the library.

Error Handling

  • node-fetch:

    Node-fetch handles errors in a way similar to the Fetch API, where it does not reject the promise for HTTP error statuses (like 404 or 500). Developers need to check the response status manually, which can be less intuitive.

  • axios:

    Axios provides built-in error handling, distinguishing between network errors and HTTP errors. It allows developers to handle errors gracefully and provides useful information about the error response.

  • got:

    Got has robust error handling capabilities, throwing errors for HTTP errors and allowing for custom error types. It also supports retrying requests automatically on failure, enhancing resilience.

  • request:

    Request has built-in error handling, but it can be verbose and less intuitive compared to modern libraries. It provides error objects with detailed information, but the callback style may complicate handling.

  • ky:

    Ky simplifies error handling by throwing errors for non-2xx responses, making it easy to catch and handle errors in a straightforward manner. Its design encourages developers to handle errors effectively.

Community and Maintenance

  • node-fetch:

    Node-fetch is well-maintained and widely used, but it is less feature-rich compared to other libraries. Its adherence to the Fetch API ensures compatibility and familiarity for developers.

  • axios:

    Axios has a large and active community, ensuring regular updates and a wealth of resources, tutorials, and third-party plugins. It is well-maintained and widely adopted in the industry.

  • got:

    Got is actively maintained and has a growing community. It is frequently updated with new features and improvements, making it a reliable choice for modern Node.js applications.

  • request:

    Request is now deprecated, which means it is no longer maintained. While it has a large user base, developers are encouraged to migrate to more modern alternatives.

  • ky:

    Ky is relatively new but has gained popularity due to its modern design and simplicity. It is actively maintained, and its community is growing, providing support and resources.

Learning Curve

  • node-fetch:

    Node-fetch's familiarity with the Fetch API makes it easy to learn for those who have experience with browser-based JavaScript. However, its minimalistic approach may require additional setup for advanced use cases.

  • axios:

    Axios has a gentle learning curve, especially for developers familiar with promises and async/await. Its extensive documentation and examples make it easy to get started quickly.

  • got:

    Got is designed to be intuitive and easy to use, with a straightforward API that minimizes the learning curve for new users. Its documentation is comprehensive and helpful.

  • request:

    Request has a steeper learning curve due to its callback-based style and extensive feature set. New users may find it challenging to navigate its options and syntax.

  • ky:

    Ky's minimalistic design and modern API make it easy to learn, especially for developers familiar with the Fetch API. Its simplicity encourages quick adoption.

How to Choose: node-fetch vs axios vs got vs request vs ky
  • node-fetch:

    Choose Node-fetch if you want a lightweight implementation of the Fetch API for Node.js, providing a familiar API for those who have used Fetch in the browser. It's a good choice for projects that require a minimalistic approach without additional features.

  • axios:

    Choose Axios if you need a promise-based HTTP client with a rich feature set, including request/response interceptors, automatic JSON data transformation, and support for older browsers. Its widespread adoption and extensive documentation make it a reliable choice for many projects.

  • got:

    Choose Got if you require a modern, lightweight HTTP client that supports promises and async/await syntax, along with built-in retry functionality and advanced features like streams and hooks. It's particularly suitable for Node.js applications that need to handle complex HTTP requests efficiently.

  • request:

    Choose Request if you need a well-established and feature-rich HTTP client, although it's worth noting that this package is now deprecated. It offers a wide range of functionalities, but for new projects, consider using alternatives like Axios or Got.

  • ky:

    Choose Ky if you are looking for a tiny, modern HTTP client that is built on top of Fetch API and offers a simple API with built-in support for retries and timeouts. It's ideal for projects that prioritize bundle size and modern JavaScript features.

README for node-fetch
Node Fetch

A light-weight module that brings Fetch API to Node.js.

Build status Coverage status Current version Install size Mentioned in Awesome Node.js Discord

Consider supporting us on our Open Collective:

Open Collective

You might be looking for the v2 docs

Motivation

Instead of implementing XMLHttpRequest in Node.js to run browser-specific Fetch polyfill, why not go from native http to fetch API directly? Hence, node-fetch, minimal code for a window.fetch compatible API on Node.js runtime.

See Jason Miller's isomorphic-unfetch or Leonardo Quixada's cross-fetch for isomorphic usage (exports node-fetch for server-side, whatwg-fetch for client-side).

Features

  • Stay consistent with window.fetch API.
  • Make conscious trade-off when following WHATWG fetch spec and stream spec implementation details, document known differences.
  • Use native promise and async functions.
  • Use native Node streams for body, on both request and response.
  • Decode content encoding (gzip/deflate/brotli) properly, and convert string output (such as res.text() and res.json()) to UTF-8 automatically.
  • Useful extensions such as redirect limit, response size limit, explicit errors for troubleshooting.

Difference from client-side fetch

  • See known differences:
  • If you happen to use a missing feature that window.fetch offers, feel free to open an issue.
  • Pull requests are welcomed too!

Installation

Current stable release (3.x) requires at least Node.js 12.20.0.

npm install node-fetch

Loading and configuring the module

ES Modules (ESM)

import fetch from 'node-fetch';

CommonJS

node-fetch from v3 is an ESM-only module - you are not able to import it with require().

If you cannot switch to ESM, please use v2 which remains compatible with CommonJS. Critical bug fixes will continue to be published for v2.

npm install node-fetch@2

Alternatively, you can use the async import() function from CommonJS to load node-fetch asynchronously:

// mod.cjs
const fetch = (...args) => import('node-fetch').then(({default: fetch}) => fetch(...args));

Providing global access

To use fetch() without importing it, you can patch the global object in node:

// fetch-polyfill.js
import fetch, {
  Blob,
  blobFrom,
  blobFromSync,
  File,
  fileFrom,
  fileFromSync,
  FormData,
  Headers,
  Request,
  Response,
} from 'node-fetch'

if (!globalThis.fetch) {
  globalThis.fetch = fetch
  globalThis.Headers = Headers
  globalThis.Request = Request
  globalThis.Response = Response
}

// index.js
import './fetch-polyfill'

// ...

Upgrading

Using an old version of node-fetch? Check out the following files:

Common Usage

NOTE: The documentation below is up-to-date with 3.x releases, if you are using an older version, please check how to upgrade.

Plain text or HTML

import fetch from 'node-fetch';

const response = await fetch('https://github.com/');
const body = await response.text();

console.log(body);

JSON

import fetch from 'node-fetch';

const response = await fetch('https://api.github.com/users/github');
const data = await response.json();

console.log(data);

Simple Post

import fetch from 'node-fetch';

const response = await fetch('https://httpbin.org/post', {method: 'POST', body: 'a=1'});
const data = await response.json();

console.log(data);

Post with JSON

import fetch from 'node-fetch';

const body = {a: 1};

const response = await fetch('https://httpbin.org/post', {
	method: 'post',
	body: JSON.stringify(body),
	headers: {'Content-Type': 'application/json'}
});
const data = await response.json();

console.log(data);

Post with form parameters

URLSearchParams is available on the global object in Node.js as of v10.0.0. See official documentation for more usage methods.

NOTE: The Content-Type header is only set automatically to x-www-form-urlencoded when an instance of URLSearchParams is given as such:

import fetch from 'node-fetch';

const params = new URLSearchParams();
params.append('a', 1);

const response = await fetch('https://httpbin.org/post', {method: 'POST', body: params});
const data = await response.json();

console.log(data);

Handling exceptions

NOTE: 3xx-5xx responses are NOT exceptions, and should be handled in then(), see the next section.

Wrapping the fetch function into a try/catch block will catch all exceptions, such as errors originating from node core libraries, like network errors, and operational errors which are instances of FetchError. See the error handling document for more details.

import fetch from 'node-fetch';

try {
	await fetch('https://domain.invalid/');
} catch (error) {
	console.log(error);
}

Handling client and server errors

It is common to create a helper function to check that the response contains no client (4xx) or server (5xx) error responses:

import fetch from 'node-fetch';

class HTTPResponseError extends Error {
	constructor(response) {
		super(`HTTP Error Response: ${response.status} ${response.statusText}`);
		this.response = response;
	}
}

const checkStatus = response => {
	if (response.ok) {
		// response.status >= 200 && response.status < 300
		return response;
	} else {
		throw new HTTPResponseError(response);
	}
}

const response = await fetch('https://httpbin.org/status/400');

try {
	checkStatus(response);
} catch (error) {
	console.error(error);

	const errorBody = await error.response.text();
	console.error(`Error body: ${errorBody}`);
}

Handling cookies

Cookies are not stored by default. However, cookies can be extracted and passed by manipulating request and response headers. See Extract Set-Cookie Header for details.

Advanced Usage

Streams

The "Node.js way" is to use streams when possible. You can pipe res.body to another stream. This example uses stream.pipeline to attach stream error handlers and wait for the download to complete.

import {createWriteStream} from 'node:fs';
import {pipeline} from 'node:stream';
import {promisify} from 'node:util'
import fetch from 'node-fetch';

const streamPipeline = promisify(pipeline);

const response = await fetch('https://github.githubassets.com/images/modules/logos_page/Octocat.png');

if (!response.ok) throw new Error(`unexpected response ${response.statusText}`);

await streamPipeline(response.body, createWriteStream('./octocat.png'));

In Node.js 14 you can also use async iterators to read body; however, be careful to catch errors -- the longer a response runs, the more likely it is to encounter an error.

import fetch from 'node-fetch';

const response = await fetch('https://httpbin.org/stream/3');

try {
	for await (const chunk of response.body) {
		console.dir(JSON.parse(chunk.toString()));
	}
} catch (err) {
	console.error(err.stack);
}

In Node.js 12 you can also use async iterators to read body; however, async iterators with streams did not mature until Node.js 14, so you need to do some extra work to ensure you handle errors directly from the stream and wait on it response to fully close.

import fetch from 'node-fetch';

const read = async body => {
	let error;
	body.on('error', err => {
		error = err;
	});

	for await (const chunk of body) {
		console.dir(JSON.parse(chunk.toString()));
	}

	return new Promise((resolve, reject) => {
		body.on('close', () => {
			error ? reject(error) : resolve();
		});
	});
};

try {
	const response = await fetch('https://httpbin.org/stream/3');
	await read(response.body);
} catch (err) {
	console.error(err.stack);
}

Accessing Headers and other Metadata

import fetch from 'node-fetch';

const response = await fetch('https://github.com/');

console.log(response.ok);
console.log(response.status);
console.log(response.statusText);
console.log(response.headers.raw());
console.log(response.headers.get('content-type'));

Extract Set-Cookie Header

Unlike browsers, you can access raw Set-Cookie headers manually using Headers.raw(). This is a node-fetch only API.

import fetch from 'node-fetch';

const response = await fetch('https://example.com');

// Returns an array of values, instead of a string of comma-separated values
console.log(response.headers.raw()['set-cookie']);

Post data using a file

import fetch, {
  Blob,
  blobFrom,
  blobFromSync,
  File,
  fileFrom,
  fileFromSync,
} from 'node-fetch'

const mimetype = 'text/plain'
const blob = fileFromSync('./input.txt', mimetype)
const url = 'https://httpbin.org/post'

const response = await fetch(url, { method: 'POST', body: blob })
const data = await response.json()

console.log(data)

node-fetch comes with a spec-compliant FormData implementations for posting multipart/form-data payloads

import fetch, { FormData, File, fileFrom } from 'node-fetch'

const httpbin = 'https://httpbin.org/post'
const formData = new FormData()
const binary = new Uint8Array([ 97, 98, 99 ])
const abc = new File([binary], 'abc.txt', { type: 'text/plain' })

formData.set('greeting', 'Hello, world!')
formData.set('file-upload', abc, 'new name.txt')

const response = await fetch(httpbin, { method: 'POST', body: formData })
const data = await response.json()

console.log(data)

If you for some reason need to post a stream coming from any arbitrary place, then you can append a Blob or a File look-a-like item.

The minimum requirement is that it has:

  1. A Symbol.toStringTag getter or property that is either Blob or File
  2. A known size.
  3. And either a stream() method or a arrayBuffer() method that returns a ArrayBuffer.

The stream() must return any async iterable object as long as it yields Uint8Array (or Buffer) so Node.Readable streams and whatwg streams works just fine.

formData.append('upload', {
	[Symbol.toStringTag]: 'Blob',
	size: 3,
  *stream() {
    yield new Uint8Array([97, 98, 99])
	},
	arrayBuffer() {
		return new Uint8Array([97, 98, 99]).buffer
	}
}, 'abc.txt')

Request cancellation with AbortSignal

You may cancel requests with AbortController. A suggested implementation is abort-controller.

An example of timing out a request after 150ms could be achieved as the following:

import fetch, { AbortError } from 'node-fetch';

// AbortController was added in node v14.17.0 globally
const AbortController = globalThis.AbortController || await import('abort-controller')

const controller = new AbortController();
const timeout = setTimeout(() => {
	controller.abort();
}, 150);

try {
	const response = await fetch('https://example.com', {signal: controller.signal});
	const data = await response.json();
} catch (error) {
	if (error instanceof AbortError) {
		console.log('request was aborted');
	}
} finally {
	clearTimeout(timeout);
}

See test cases for more examples.

API

fetch(url[, options])

  • url A string representing the URL for fetching
  • options Options for the HTTP(S) request
  • Returns: Promise<Response>

Perform an HTTP(S) fetch.

url should be an absolute URL, such as https://example.com/. A path-relative URL (/file/under/root) or protocol-relative URL (//can-be-http-or-https.com/) will result in a rejected Promise.

Options

The default values are shown after each option key.

{
	// These properties are part of the Fetch Standard
	method: 'GET',
	headers: {},            // Request headers. format is the identical to that accepted by the Headers constructor (see below)
	body: null,             // Request body. can be null, or a Node.js Readable stream
	redirect: 'follow',     // Set to `manual` to extract redirect headers, `error` to reject redirect
	signal: null,           // Pass an instance of AbortSignal to optionally abort requests

	// The following properties are node-fetch extensions
	follow: 20,             // maximum redirect count. 0 to not follow redirect
	compress: true,         // support gzip/deflate content encoding. false to disable
	size: 0,                // maximum response body size in bytes. 0 to disable
	agent: null,            // http(s).Agent instance or function that returns an instance (see below)
	highWaterMark: 16384,   // the maximum number of bytes to store in the internal buffer before ceasing to read from the underlying resource.
	insecureHTTPParser: false	// Use an insecure HTTP parser that accepts invalid HTTP headers when `true`.
}

Default Headers

If no values are set, the following request headers will be sent automatically:

| Header | Value | | ------------------- | ------------------------------------------------------ | | Accept-Encoding | gzip, deflate, br (when options.compress === true) | | Accept | */* | | Content-Length | (automatically calculated, if possible) | | Host | (host and port information from the target URI) | | Transfer-Encoding | chunked (when req.body is a stream) | | User-Agent | node-fetch |

Note: when body is a Stream, Content-Length is not set automatically.

Custom Agent

The agent option allows you to specify networking related options which are out of the scope of Fetch, including and not limited to the following:

  • Support self-signed certificate
  • Use only IPv4 or IPv6
  • Custom DNS Lookup

See http.Agent for more information.

If no agent is specified, the default agent provided by Node.js is used. Note that this changed in Node.js 19 to have keepalive true by default. If you wish to enable keepalive in an earlier version of Node.js, you can override the agent as per the following code sample.

In addition, the agent option accepts a function that returns http(s).Agent instance given current URL, this is useful during a redirection chain across HTTP and HTTPS protocol.

import http from 'node:http';
import https from 'node:https';

const httpAgent = new http.Agent({
	keepAlive: true
});
const httpsAgent = new https.Agent({
	keepAlive: true
});

const options = {
	agent: function(_parsedURL) {
		if (_parsedURL.protocol == 'http:') {
			return httpAgent;
		} else {
			return httpsAgent;
		}
	}
};

Custom highWaterMark

Stream on Node.js have a smaller internal buffer size (16kB, aka highWaterMark) from client-side browsers (>1MB, not consistent across browsers). Because of that, when you are writing an isomorphic app and using res.clone(), it will hang with large response in Node.

The recommended way to fix this problem is to resolve cloned response in parallel:

import fetch from 'node-fetch';

const response = await fetch('https://example.com');
const r1 = response.clone();

const results = await Promise.all([response.json(), r1.text()]);

console.log(results[0]);
console.log(results[1]);

If for some reason you don't like the solution above, since 3.x you are able to modify the highWaterMark option:

import fetch from 'node-fetch';

const response = await fetch('https://example.com', {
	// About 1MB
	highWaterMark: 1024 * 1024
});

const result = await res.clone().arrayBuffer();
console.dir(result);

Insecure HTTP Parser

Passed through to the insecureHTTPParser option on http(s).request. See http.request for more information.

Manual Redirect

The redirect: 'manual' option for node-fetch is different from the browser & specification, which results in an opaque-redirect filtered response. node-fetch gives you the typical basic filtered response instead.

import fetch from 'node-fetch';

const response = await fetch('https://httpbin.org/status/301', { redirect: 'manual' });

if (response.status === 301 || response.status === 302) {
	const locationURL = new URL(response.headers.get('location'), response.url);
	const response2 = await fetch(locationURL, { redirect: 'manual' });
	console.dir(response2);
}

Class: Request

An HTTP(S) request containing information about URL, method, headers, and the body. This class implements the Body interface.

Due to the nature of Node.js, the following properties are not implemented at this moment:

  • type
  • destination
  • mode
  • credentials
  • cache
  • integrity
  • keepalive

The following node-fetch extension properties are provided:

  • follow
  • compress
  • counter
  • agent
  • highWaterMark

See options for exact meaning of these extensions.

new Request(input[, options])

(spec-compliant)

  • input A string representing a URL, or another Request (which will be cloned)
  • options Options for the HTTP(S) request

Constructs a new Request object. The constructor is identical to that in the browser.

In most cases, directly fetch(url, options) is simpler than creating a Request object.

Class: Response

An HTTP(S) response. This class implements the Body interface.

The following properties are not implemented in node-fetch at this moment:

  • trailer

new Response([body[, options]])

(spec-compliant)

Constructs a new Response object. The constructor is identical to that in the browser.

Because Node.js does not implement service workers (for which this class was designed), one rarely has to construct a Response directly.

response.ok

(spec-compliant)

Convenience property representing if the request ended normally. Will evaluate to true if the response status was greater than or equal to 200 but smaller than 300.

response.redirected

(spec-compliant)

Convenience property representing if the request has been redirected at least once. Will evaluate to true if the internal redirect counter is greater than 0.

response.type

(deviation from spec)

Convenience property representing the response's type. node-fetch only supports 'default' and 'error' and does not make use of filtered responses.

Class: Headers

This class allows manipulating and iterating over a set of HTTP headers. All methods specified in the Fetch Standard are implemented.

new Headers([init])

(spec-compliant)

  • init Optional argument to pre-fill the Headers object

Construct a new Headers object. init can be either null, a Headers object, an key-value map object or any iterable object.

// Example adapted from https://fetch.spec.whatwg.org/#example-headers-class
import {Headers} from 'node-fetch';

const meta = {
	'Content-Type': 'text/xml'
};
const headers = new Headers(meta);

// The above is equivalent to
const meta = [['Content-Type', 'text/xml']];
const headers = new Headers(meta);

// You can in fact use any iterable objects, like a Map or even another Headers
const meta = new Map();
meta.set('Content-Type', 'text/xml');
const headers = new Headers(meta);
const copyOfHeaders = new Headers(headers);

Interface: Body

Body is an abstract interface with methods that are applicable to both Request and Response classes.

body.body

(deviation from spec)

Data are encapsulated in the Body object. Note that while the Fetch Standard requires the property to always be a WHATWG ReadableStream, in node-fetch it is a Node.js Readable stream.

body.bodyUsed

(spec-compliant)

  • Boolean

A boolean property for if this body has been consumed. Per the specs, a consumed body cannot be used again.

body.arrayBuffer()

body.formData()

body.blob()

body.json()

body.text()

fetch comes with methods to parse multipart/form-data payloads as well as x-www-form-urlencoded bodies using .formData() this comes from the idea that Service Worker can intercept such messages before it's sent to the server to alter them. This is useful for anybody building a server so you can use it to parse & consume payloads.

Code example
import http from 'node:http'
import { Response } from 'node-fetch'

http.createServer(async function (req, res) {
  const formData = await new Response(req, {
    headers: req.headers // Pass along the boundary value
  }).formData()
  const allFields = [...formData]

  const file = formData.get('uploaded-files')
  const arrayBuffer = await file.arrayBuffer()
  const text = await file.text()
  const whatwgReadableStream = file.stream()

  // other was to consume the request could be to do:
  const json = await new Response(req).json()
  const text = await new Response(req).text()
  const arrayBuffer = await new Response(req).arrayBuffer()
  const blob = await new Response(req, {
    headers: req.headers // So that `type` inherits `Content-Type`
  }.blob()
})

Class: FetchError

(node-fetch extension)

An operational error in the fetching process. See ERROR-HANDLING.md for more info.

Class: AbortError

(node-fetch extension)

An Error thrown when the request is aborted in response to an AbortSignal's abort event. It has a name property of AbortError. See ERROR-HANDLING.MD for more info.

TypeScript

Since 3.x types are bundled with node-fetch, so you don't need to install any additional packages.

For older versions please use the type definitions from DefinitelyTyped:

npm install --save-dev @types/node-fetch@2.x

Acknowledgement

Thanks to github/fetch for providing a solid implementation reference.

Team

| David Frank | Jimmy Wärting | Antoni Kepinski | Richie Bendall | Gregor Martynus | | ----------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------- | ----------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------ | ----------------------------------------------------------------------------------- | | David Frank | Jimmy Wärting | Antoni Kepinski | Richie Bendall | Gregor Martynus |

Former

License

MIT