IndexedDB Libraries Comparison
idb vs dexie
1 Year
idbdexieSimilar Packages:
What's IndexedDB Libraries?

Dexie and idb are JavaScript libraries that simplify the use of IndexedDB, a low-level API for client-side storage of significant amounts of structured data, including files/blobs. Both libraries provide a more user-friendly API compared to the native IndexedDB API, making it easier for developers to perform CRUD operations and manage data in web applications. Dexie offers a rich set of features and a fluent API, while idb focuses on providing a promise-based wrapper around the IndexedDB API, making it lightweight and straightforward for basic use cases.

NPM Package Downloads Trend
Github Stars Ranking
Stat Detail
Package
Downloads
Stars
Size
Issues
Publish
License
idb6,839,2676,47582.5 kB48a year agoISC
dexie499,28611,7802.99 MB570a month agoApache-2.0
Feature Comparison: idb vs dexie

API Design

  • idb:

    idb offers a simple promise-based API that closely resembles the native IndexedDB API. It is designed to be minimalistic, providing essential methods for CRUD operations without additional abstractions, making it easy to learn and use for basic scenarios.

  • dexie:

    Dexie provides a fluent and chainable API that allows developers to write queries in a more readable and expressive manner. It supports complex queries, transactions, and indexing, making it easier to work with large datasets and perform advanced operations.

Querying Capabilities

  • idb:

    idb provides basic querying capabilities through the native IndexedDB API. While it supports simple get and put operations, it lacks the advanced querying features found in Dexie, making it less suitable for applications that require complex data retrieval.

  • dexie:

    Dexie excels in querying capabilities, allowing for complex queries with ease. It supports filtering, sorting, and multi-indexed queries, enabling developers to retrieve data efficiently and effectively. Its powerful query syntax allows for a more expressive way to interact with the database.

Performance

  • idb:

    idb is lightweight and performs well for basic operations. However, since it directly wraps the native IndexedDB API, performance may vary based on how well developers manage transactions and data retrieval, especially in more complex scenarios.

  • dexie:

    Dexie is optimized for performance, leveraging IndexedDB's capabilities while providing additional features like bulk operations and automatic transaction management. It minimizes the overhead of database interactions, making it suitable for applications that require high performance with large datasets.

Error Handling

  • idb:

    idb requires developers to handle errors manually, as it relies on the native IndexedDB API's error handling. This can lead to more complex error management in applications, especially for those less familiar with the intricacies of IndexedDB.

  • dexie:

    Dexie has built-in error handling mechanisms that provide clearer error messages and easier debugging. It allows developers to catch and handle errors in a more structured way, improving the overall robustness of applications that rely on IndexedDB.

Community and Ecosystem

  • idb:

    idb, while simpler, has a smaller community and fewer extensions compared to Dexie. It is primarily focused on providing a straightforward interface for IndexedDB, making it less versatile in terms of additional features and community support.

  • dexie:

    Dexie has a strong community and a rich ecosystem of plugins and extensions, allowing for enhanced functionality and integration with other libraries. This makes it a popular choice among developers looking for a comprehensive solution for IndexedDB management.

How to Choose: idb vs dexie
  • idb:

    Choose idb if you prefer a lightweight library that provides a simple promise-based interface for basic IndexedDB operations. It is suitable for projects that require minimal overhead and straightforward data storage without the need for advanced features.

  • dexie:

    Choose Dexie if you need a powerful and feature-rich library that offers advanced querying capabilities, a fluent API, and support for complex data structures. It is ideal for applications that require extensive data manipulation and performance optimizations.

README for idb

IndexedDB with usability.

This is a tiny (~1.19kB brotli'd) library that mostly mirrors the IndexedDB API, but with small improvements that make a big difference to usability.

  1. Installation
  2. Changes
  3. Browser support
  4. API
    1. openDB
    2. deleteDB
    3. unwrap
    4. wrap
    5. General enhancements
    6. IDBDatabase enhancements
    7. IDBTransaction enhancements
    8. IDBCursor enhancements
    9. Async iterators
  5. Examples
  6. TypeScript

Installation

Using npm

npm install idb

Then, assuming you're using a module-compatible system (like webpack, Rollup etc):

import { openDB, deleteDB, wrap, unwrap } from 'idb';

async function doDatabaseStuff() {
  const db = await openDB(…);
}

Directly in a browser

Using the modules method directly via jsdelivr:

<script type="module">
  import { openDB, deleteDB, wrap, unwrap } from 'https://cdn.jsdelivr.net/npm/idb@8/+esm';

  async function doDatabaseStuff() {
    const db = await openDB(…);
  }
</script>

Using external script reference

<script src="https://cdn.jsdelivr.net/npm/idb@8/build/umd.js"></script>
<script>
  async function doDatabaseStuff() {
    const db = await idb.openDB(…);
  }
</script>

A global, idb, will be created, containing all exports of the module version.

Changes

See details of (potentially) breaking changes.

Browser support

This library targets modern browsers, as in Chrome, Firefox, Safari, and other browsers that use those engines, such as Edge. IE is not supported.

API

openDB

This method opens a database, and returns a promise for an enhanced IDBDatabase.

const db = await openDB(name, version, {
  upgrade(db, oldVersion, newVersion, transaction, event) {
    // …
  },
  blocked(currentVersion, blockedVersion, event) {
    // …
  },
  blocking(currentVersion, blockedVersion, event) {
    // …
  },
  terminated() {
    // …
  },
});
  • name: Name of the database.
  • version (optional): Schema version, or undefined to open the current version.
  • upgrade (optional): Called if this version of the database has never been opened before. Use it to specify the schema for the database. This is similar to the upgradeneeded event in plain IndexedDB.
    • db: An enhanced IDBDatabase.
    • oldVersion: Last version of the database opened by the user.
    • newVersion: Whatever new version you provided.
    • transaction: An enhanced transaction for this upgrade. This is useful if you need to get data from other stores as part of a migration.
    • event: The event object for the associated upgradeneeded event.
  • blocked (optional): Called if there are older versions of the database open on the origin, so this version cannot open. This is similar to the blocked event in plain IndexedDB.
    • currentVersion: Version of the database that's blocking this one.
    • blockedVersion: The version of the database being blocked (whatever version you provided to openDB).
    • event: The event object for the associated blocked event.
  • blocking (optional): Called if this connection is blocking a future version of the database from opening. This is similar to the versionchange event in plain IndexedDB.
    • currentVersion: Version of the open database (whatever version you provided to openDB).
    • blockedVersion: The version of the database that's being blocked.
    • event: The event object for the associated versionchange event.
  • terminated (optional): Called if the browser abnormally terminates the connection, but not on regular closures like calling db.close(). This is similar to the close event in plain IndexedDB.

deleteDB

Deletes a database.

await deleteDB(name, {
  blocked() {
    // …
  },
});
  • name: Name of the database.
  • blocked (optional): Called if the database already exists and there are open connections that don’t close in response to a versionchange event, the request will be blocked until they all close.
    • currentVersion: Version of the database that's blocking the delete operation.
    • event: The event object for the associated 'versionchange' event.

unwrap

Takes an enhanced IndexedDB object and returns the plain unmodified one.

const unwrapped = unwrap(wrapped);

This is useful if, for some reason, you want to drop back into plain IndexedDB. Promises will also be converted back into IDBRequest objects.

wrap

Takes an IDB object and returns a version enhanced by this library.

const wrapped = wrap(unwrapped);

This is useful if some third party code gives you an IDBDatabase object and you want it to have the features of this library.

General enhancements

Once you've opened the database the API is the same as IndexedDB, except for a few changes to make things easier.

Firstly, any method that usually returns an IDBRequest object will now return a promise for the result.

const store = db.transaction(storeName).objectStore(storeName);
const value = await store.get(key);

Promises & throwing

The library turns all IDBRequest objects into promises, but it doesn't know in advance which methods may return promises.

As a result, methods such as store.put may throw instead of returning a promise.

If you're using async functions, there's no observable difference.

Transaction lifetime

TL;DR: Do not await other things between the start and end of your transaction, otherwise the transaction will close before you're done.

An IDB transaction auto-closes if it doesn't have anything left do once microtasks have been processed. As a result, this works fine:

const tx = db.transaction('keyval', 'readwrite');
const store = tx.objectStore('keyval');
const val = (await store.get('counter')) || 0;
await store.put(val + 1, 'counter');
await tx.done;

But this doesn't:

const tx = db.transaction('keyval', 'readwrite');
const store = tx.objectStore('keyval');
const val = (await store.get('counter')) || 0;
// This is where things go wrong:
const newVal = await fetch('/increment?val=' + val);
// And this throws an error:
await store.put(newVal, 'counter');
await tx.done;

In this case, the transaction closes while the browser is fetching, so store.put fails.

IDBDatabase enhancements

Shortcuts to get/set from an object store

It's common to create a transaction for a single action, so helper methods are included for this:

// Get a value from a store:
const value = await db.get(storeName, key);
// Set a value in a store:
await db.put(storeName, value, key);

The shortcuts are: get, getKey, getAll, getAllKeys, count, put, add, delete, and clear. Each method takes a storeName argument, the name of the object store, and the rest of the arguments are the same as the equivalent IDBObjectStore method.

Shortcuts to get from an index

The shortcuts are: getFromIndex, getKeyFromIndex, getAllFromIndex, getAllKeysFromIndex, and countFromIndex.

// Get a value from an index:
const value = await db.getFromIndex(storeName, indexName, key);

Each method takes storeName and indexName arguments, followed by the rest of the arguments from the equivalent IDBIndex method.

IDBTransaction enhancements

tx.store

If a transaction involves a single store, the store property will reference that store.

const tx = db.transaction('whatever');
const store = tx.store;

If a transaction involves multiple stores, tx.store is undefined, you need to use tx.objectStore(storeName) to get the stores.

tx.done

Transactions have a .done promise which resolves when the transaction completes successfully, and otherwise rejects with the transaction error.

const tx = db.transaction(storeName, 'readwrite');
await Promise.all([
  tx.store.put('bar', 'foo'),
  tx.store.put('world', 'hello'),
  tx.done,
]);

If you're writing to the database, tx.done is the signal that everything was successfully committed to the database. However, it's still beneficial to await the individual operations, as you'll see the error that caused the transaction to fail.

IDBCursor enhancements

Cursor advance methods (advance, continue, continuePrimaryKey) return a promise for the cursor, or null if there are no further values to provide.

let cursor = await db.transaction(storeName).store.openCursor();

while (cursor) {
  console.log(cursor.key, cursor.value);
  cursor = await cursor.continue();
}

Async iterators

You can iterate over stores, indexes, and cursors:

const tx = db.transaction(storeName);

for await (const cursor of tx.store) {
  // …
}

Each yielded object is an IDBCursor. You can optionally use the advance methods to skip items (within an async iterator they return void):

const tx = db.transaction(storeName);

for await (const cursor of tx.store) {
  console.log(cursor.value);
  // Skip the next item
  cursor.advance(2);
}

If you don't manually advance the cursor, cursor.continue() is called for you.

Stores and indexes also have an iterate method which has the same signature as openCursor, but returns an async iterator:

const index = db.transaction('books').store.index('author');

for await (const cursor of index.iterate('Douglas Adams')) {
  console.log(cursor.value);
}

Examples

Keyval store

This is very similar to localStorage, but async. If this is all you need, you may be interested in idb-keyval. You can always upgrade to this library later.

import { openDB } from 'idb';

const dbPromise = openDB('keyval-store', 1, {
  upgrade(db) {
    db.createObjectStore('keyval');
  },
});

export async function get(key) {
  return (await dbPromise).get('keyval', key);
}
export async function set(key, val) {
  return (await dbPromise).put('keyval', val, key);
}
export async function del(key) {
  return (await dbPromise).delete('keyval', key);
}
export async function clear() {
  return (await dbPromise).clear('keyval');
}
export async function keys() {
  return (await dbPromise).getAllKeys('keyval');
}

Article store

import { openDB } from 'idb/with-async-ittr.js';

async function demo() {
  const db = await openDB('Articles', 1, {
    upgrade(db) {
      // Create a store of objects
      const store = db.createObjectStore('articles', {
        // The 'id' property of the object will be the key.
        keyPath: 'id',
        // If it isn't explicitly set, create a value by auto incrementing.
        autoIncrement: true,
      });
      // Create an index on the 'date' property of the objects.
      store.createIndex('date', 'date');
    },
  });

  // Add an article:
  await db.add('articles', {
    title: 'Article 1',
    date: new Date('2019-01-01'),
    body: '…',
  });

  // Add multiple articles in one transaction:
  {
    const tx = db.transaction('articles', 'readwrite');
    await Promise.all([
      tx.store.add({
        title: 'Article 2',
        date: new Date('2019-01-01'),
        body: '…',
      }),
      tx.store.add({
        title: 'Article 3',
        date: new Date('2019-01-02'),
        body: '…',
      }),
      tx.done,
    ]);
  }

  // Get all the articles in date order:
  console.log(await db.getAllFromIndex('articles', 'date'));

  // Add 'And, happy new year!' to all articles on 2019-01-01:
  {
    const tx = db.transaction('articles', 'readwrite');
    const index = tx.store.index('date');

    for await (const cursor of index.iterate(new Date('2019-01-01'))) {
      const article = { ...cursor.value };
      article.body += ' And, happy new year!';
      cursor.update(article);
    }

    await tx.done;
  }
}

TypeScript

This library is fully typed, and you can improve things by providing types for your database:

import { openDB, DBSchema } from 'idb';

interface MyDB extends DBSchema {
  'favourite-number': {
    key: string;
    value: number;
  };
  products: {
    value: {
      name: string;
      price: number;
      productCode: string;
    };
    key: string;
    indexes: { 'by-price': number };
  };
}

async function demo() {
  const db = await openDB<MyDB>('my-db', 1, {
    upgrade(db) {
      db.createObjectStore('favourite-number');

      const productStore = db.createObjectStore('products', {
        keyPath: 'productCode',
      });
      productStore.createIndex('by-price', 'price');
    },
  });

  // This works
  await db.put('favourite-number', 7, 'Jen');
  // This fails at compile time, as the 'favourite-number' store expects a number.
  await db.put('favourite-number', 'Twelve', 'Jake');
}

To define types for your database, extend DBSchema with an interface where the keys are the names of your object stores.

For each value, provide an object where value is the type of values within the store, and key is the type of keys within the store.

Optionally, indexes can contain a map of index names, to the type of key within that index.

Provide this interface when calling openDB, and from then on your database will be strongly typed. This also allows your IDE to autocomplete the names of stores and indexes.

Opting out of types

If you call openDB without providing types, your database will use basic types. However, sometimes you'll need to interact with stores that aren't in your schema, perhaps during upgrades. In that case you can cast.

Let's say we were renaming the 'favourite-number' store to 'fave-nums':

import { openDB, DBSchema, IDBPDatabase } from 'idb';

interface MyDBV1 extends DBSchema {
  'favourite-number': { key: string; value: number };
}

interface MyDBV2 extends DBSchema {
  'fave-num': { key: string; value: number };
}

const db = await openDB<MyDBV2>('my-db', 2, {
  async upgrade(db, oldVersion) {
    // Cast a reference of the database to the old schema.
    const v1Db = db as unknown as IDBPDatabase<MyDBV1>;

    if (oldVersion < 1) {
      v1Db.createObjectStore('favourite-number');
    }
    if (oldVersion < 2) {
      const store = v1Db.createObjectStore('favourite-number');
      store.name = 'fave-num';
    }
  },
});

You can also cast to a typeless database by omitting the type, eg db as IDBPDatabase.

Note: Types like IDBPDatabase are used by TypeScript only. The implementation uses proxies under the hood.

Developing

npm run dev

This will also perform type testing.

To test, navigate to build/test/ in a browser. You'll need to set up a basic web server for this.