jsonwebtoken vs jwt-decode
JSON Web Token Libraries Comparison
1 Year
jsonwebtokenjwt-decodeSimilar Packages:
What's JSON Web Token Libraries?

JSON Web Token (JWT) libraries are essential for handling authentication and authorization in web applications. They provide a standardized way to securely transmit information between parties as a JSON object. JWTs are compact, URL-safe tokens that can be used for various purposes, including user authentication, information exchange, and API security. The libraries facilitate the creation, verification, and decoding of these tokens, ensuring that sensitive data remains protected while enabling seamless user experiences across applications.

Package Weekly Downloads Trend
Github Stars Ranking
Stat Detail
Package
Downloads
Stars
Size
Issues
Publish
License
jsonwebtoken17,955,04417,86543.5 kB171a year agoMIT
jwt-decode8,292,2283,27113.9 kB6a year agoMIT
Feature Comparison: jsonwebtoken vs jwt-decode

Token Creation

  • jsonwebtoken:

    jsonwebtoken provides robust functionality for creating and signing JWTs. It allows you to specify payload data, set expiration times, and choose signing algorithms, making it suitable for generating secure tokens for user authentication and authorization.

  • jwt-decode:

    jwt-decode does not provide token creation capabilities. Its focus is solely on decoding existing JWTs to extract payload data without any signing or verification features.

Token Verification

  • jsonwebtoken:

    jsonwebtoken includes built-in methods for verifying the authenticity of JWTs. It checks the token's signature against the secret key or public key used for signing, ensuring that the token has not been tampered with and is still valid based on its expiration time.

  • jwt-decode:

    jwt-decode does not perform any verification of tokens. It simply decodes the token's payload, which means it does not ensure the integrity or authenticity of the token.

Use Cases

  • jsonwebtoken:

    jsonwebtoken is best suited for server-side applications where secure token generation and verification are critical. It is commonly used in REST APIs to manage user sessions, authenticate users, and authorize access to resources based on token claims.

  • jwt-decode:

    jwt-decode is primarily used in client-side applications where you need to read and extract data from JWTs, such as user roles or permissions, without the need for server-side verification.

Performance

  • jsonwebtoken:

    jsonwebtoken is optimized for performance in token creation and verification, but it can introduce overhead due to cryptographic operations, especially with asymmetric signing algorithms. It is essential to balance security and performance based on application needs.

  • jwt-decode:

    jwt-decode is lightweight and fast, as it focuses solely on decoding tokens without any verification process. This makes it suitable for scenarios where performance is critical and security checks are handled separately.

Security Features

  • jsonwebtoken:

    jsonwebtoken provides advanced security features such as support for asymmetric signing (using public/private key pairs), which enhances security for token generation and verification. It also allows for customizable expiration and claim settings, making it versatile for various security requirements.

  • jwt-decode:

    jwt-decode does not offer any security features since it does not handle token signing or verification. It is purely a utility for decoding JWTs and should be used in conjunction with secure practices for token management.

How to Choose: jsonwebtoken vs jwt-decode
  • jsonwebtoken:

    Choose jsonwebtoken if you need to create, sign, and verify JWTs. It is suitable for server-side applications where you need to manage user sessions and secure API endpoints by generating tokens with specific claims and expiration times.

  • jwt-decode:

    Choose jwt-decode if your primary requirement is to decode JWTs without validating them. It is ideal for client-side applications where you want to extract user information from the token without the overhead of signing or verification.

README for jsonwebtoken

jsonwebtoken

| Build | Dependency | |-----------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------| | Build Status | Dependency Status |

An implementation of JSON Web Tokens.

This was developed against draft-ietf-oauth-json-web-token-08. It makes use of node-jws

Install

$ npm install jsonwebtoken

Migration notes

Usage

jwt.sign(payload, secretOrPrivateKey, [options, callback])

(Asynchronous) If a callback is supplied, the callback is called with the err or the JWT.

(Synchronous) Returns the JsonWebToken as string

payload could be an object literal, buffer or string representing valid JSON.

Please note that exp or any other claim is only set if the payload is an object literal. Buffer or string payloads are not checked for JSON validity.

If payload is not a buffer or a string, it will be coerced into a string using JSON.stringify.

secretOrPrivateKey is a string (utf-8 encoded), buffer, object, or KeyObject containing either the secret for HMAC algorithms or the PEM encoded private key for RSA and ECDSA. In case of a private key with passphrase an object { key, passphrase } can be used (based on crypto documentation), in this case be sure you pass the algorithm option. When signing with RSA algorithms the minimum modulus length is 2048 except when the allowInsecureKeySizes option is set to true. Private keys below this size will be rejected with an error.

options:

  • algorithm (default: HS256)
  • expiresIn: expressed in seconds or a string describing a time span vercel/ms.

    Eg: 60, "2 days", "10h", "7d". A numeric value is interpreted as a seconds count. If you use a string be sure you provide the time units (days, hours, etc), otherwise milliseconds unit is used by default ("120" is equal to "120ms").

  • notBefore: expressed in seconds or a string describing a time span vercel/ms.

    Eg: 60, "2 days", "10h", "7d". A numeric value is interpreted as a seconds count. If you use a string be sure you provide the time units (days, hours, etc), otherwise milliseconds unit is used by default ("120" is equal to "120ms").

  • audience
  • issuer
  • jwtid
  • subject
  • noTimestamp
  • header
  • keyid
  • mutatePayload: if true, the sign function will modify the payload object directly. This is useful if you need a raw reference to the payload after claims have been applied to it but before it has been encoded into a token.
  • allowInsecureKeySizes: if true allows private keys with a modulus below 2048 to be used for RSA
  • allowInvalidAsymmetricKeyTypes: if true, allows asymmetric keys which do not match the specified algorithm. This option is intended only for backwards compatability and should be avoided.

There are no default values for expiresIn, notBefore, audience, subject, issuer. These claims can also be provided in the payload directly with exp, nbf, aud, sub and iss respectively, but you can't include in both places.

Remember that exp, nbf and iat are NumericDate, see related Token Expiration (exp claim)

The header can be customized via the options.header object.

Generated jwts will include an iat (issued at) claim by default unless noTimestamp is specified. If iat is inserted in the payload, it will be used instead of the real timestamp for calculating other things like exp given a timespan in options.expiresIn.

Synchronous Sign with default (HMAC SHA256)

var jwt = require('jsonwebtoken');
var token = jwt.sign({ foo: 'bar' }, 'shhhhh');

Synchronous Sign with RSA SHA256

// sign with RSA SHA256
var privateKey = fs.readFileSync('private.key');
var token = jwt.sign({ foo: 'bar' }, privateKey, { algorithm: 'RS256' });

Sign asynchronously

jwt.sign({ foo: 'bar' }, privateKey, { algorithm: 'RS256' }, function(err, token) {
  console.log(token);
});

Backdate a jwt 30 seconds

var older_token = jwt.sign({ foo: 'bar', iat: Math.floor(Date.now() / 1000) - 30 }, 'shhhhh');

Token Expiration (exp claim)

The standard for JWT defines an exp claim for expiration. The expiration is represented as a NumericDate:

A JSON numeric value representing the number of seconds from 1970-01-01T00:00:00Z UTC until the specified UTC date/time, ignoring leap seconds. This is equivalent to the IEEE Std 1003.1, 2013 Edition [POSIX.1] definition "Seconds Since the Epoch", in which each day is accounted for by exactly 86400 seconds, other than that non-integer values can be represented. See RFC 3339 [RFC3339] for details regarding date/times in general and UTC in particular.

This means that the exp field should contain the number of seconds since the epoch.

Signing a token with 1 hour of expiration:

jwt.sign({
  exp: Math.floor(Date.now() / 1000) + (60 * 60),
  data: 'foobar'
}, 'secret');

Another way to generate a token like this with this library is:

jwt.sign({
  data: 'foobar'
}, 'secret', { expiresIn: 60 * 60 });

//or even better:

jwt.sign({
  data: 'foobar'
}, 'secret', { expiresIn: '1h' });

jwt.verify(token, secretOrPublicKey, [options, callback])

(Asynchronous) If a callback is supplied, function acts asynchronously. The callback is called with the decoded payload if the signature is valid and optional expiration, audience, or issuer are valid. If not, it will be called with the error.

(Synchronous) If a callback is not supplied, function acts synchronously. Returns the payload decoded if the signature is valid and optional expiration, audience, or issuer are valid. If not, it will throw the error.

Warning: When the token comes from an untrusted source (e.g. user input or external requests), the returned decoded payload should be treated like any other user input; please make sure to sanitize and only work with properties that are expected

token is the JsonWebToken string

secretOrPublicKey is a string (utf-8 encoded), buffer, or KeyObject containing either the secret for HMAC algorithms, or the PEM encoded public key for RSA and ECDSA. If jwt.verify is called asynchronous, secretOrPublicKey can be a function that should fetch the secret or public key. See below for a detailed example

As mentioned in this comment, there are other libraries that expect base64 encoded secrets (random bytes encoded using base64), if that is your case you can pass Buffer.from(secret, 'base64'), by doing this the secret will be decoded using base64 and the token verification will use the original random bytes.

options

  • algorithms: List of strings with the names of the allowed algorithms. For instance, ["HS256", "HS384"].

    If not specified a defaults will be used based on the type of key provided

    • secret - ['HS256', 'HS384', 'HS512']
    • rsa - ['RS256', 'RS384', 'RS512']
    • ec - ['ES256', 'ES384', 'ES512']
    • default - ['RS256', 'RS384', 'RS512']
  • audience: if you want to check audience (aud), provide a value here. The audience can be checked against a string, a regular expression or a list of strings and/or regular expressions.

    Eg: "urn:foo", /urn:f[o]{2}/, [/urn:f[o]{2}/, "urn:bar"]

  • complete: return an object with the decoded { payload, header, signature } instead of only the usual content of the payload.
  • issuer (optional): string or array of strings of valid values for the iss field.
  • jwtid (optional): if you want to check JWT ID (jti), provide a string value here.
  • ignoreExpiration: if true do not validate the expiration of the token.
  • ignoreNotBefore...
  • subject: if you want to check subject (sub), provide a value here
  • clockTolerance: number of seconds to tolerate when checking the nbf and exp claims, to deal with small clock differences among different servers
  • maxAge: the maximum allowed age for tokens to still be valid. It is expressed in seconds or a string describing a time span vercel/ms.

    Eg: 1000, "2 days", "10h", "7d". A numeric value is interpreted as a seconds count. If you use a string be sure you provide the time units (days, hours, etc), otherwise milliseconds unit is used by default ("120" is equal to "120ms").

  • clockTimestamp: the time in seconds that should be used as the current time for all necessary comparisons.
  • nonce: if you want to check nonce claim, provide a string value here. It is used on Open ID for the ID Tokens. (Open ID implementation notes)
  • allowInvalidAsymmetricKeyTypes: if true, allows asymmetric keys which do not match the specified algorithm. This option is intended only for backwards compatability and should be avoided.
// verify a token symmetric - synchronous
var decoded = jwt.verify(token, 'shhhhh');
console.log(decoded.foo) // bar

// verify a token symmetric
jwt.verify(token, 'shhhhh', function(err, decoded) {
  console.log(decoded.foo) // bar
});

// invalid token - synchronous
try {
  var decoded = jwt.verify(token, 'wrong-secret');
} catch(err) {
  // err
}

// invalid token
jwt.verify(token, 'wrong-secret', function(err, decoded) {
  // err
  // decoded undefined
});

// verify a token asymmetric
var cert = fs.readFileSync('public.pem');  // get public key
jwt.verify(token, cert, function(err, decoded) {
  console.log(decoded.foo) // bar
});

// verify audience
var cert = fs.readFileSync('public.pem');  // get public key
jwt.verify(token, cert, { audience: 'urn:foo' }, function(err, decoded) {
  // if audience mismatch, err == invalid audience
});

// verify issuer
var cert = fs.readFileSync('public.pem');  // get public key
jwt.verify(token, cert, { audience: 'urn:foo', issuer: 'urn:issuer' }, function(err, decoded) {
  // if issuer mismatch, err == invalid issuer
});

// verify jwt id
var cert = fs.readFileSync('public.pem');  // get public key
jwt.verify(token, cert, { audience: 'urn:foo', issuer: 'urn:issuer', jwtid: 'jwtid' }, function(err, decoded) {
  // if jwt id mismatch, err == invalid jwt id
});

// verify subject
var cert = fs.readFileSync('public.pem');  // get public key
jwt.verify(token, cert, { audience: 'urn:foo', issuer: 'urn:issuer', jwtid: 'jwtid', subject: 'subject' }, function(err, decoded) {
  // if subject mismatch, err == invalid subject
});

// alg mismatch
var cert = fs.readFileSync('public.pem'); // get public key
jwt.verify(token, cert, { algorithms: ['RS256'] }, function (err, payload) {
  // if token alg != RS256,  err == invalid signature
});

// Verify using getKey callback
// Example uses https://github.com/auth0/node-jwks-rsa as a way to fetch the keys.
var jwksClient = require('jwks-rsa');
var client = jwksClient({
  jwksUri: 'https://sandrino.auth0.com/.well-known/jwks.json'
});
function getKey(header, callback){
  client.getSigningKey(header.kid, function(err, key) {
    var signingKey = key.publicKey || key.rsaPublicKey;
    callback(null, signingKey);
  });
}

jwt.verify(token, getKey, options, function(err, decoded) {
  console.log(decoded.foo) // bar
});

Need to peek into a JWT without verifying it? (Click to expand)

jwt.decode(token [, options])

(Synchronous) Returns the decoded payload without verifying if the signature is valid.

Warning: This will not verify whether the signature is valid. You should not use this for untrusted messages. You most likely want to use jwt.verify instead.

Warning: When the token comes from an untrusted source (e.g. user input or external request), the returned decoded payload should be treated like any other user input; please make sure to sanitize and only work with properties that are expected

token is the JsonWebToken string

options:

  • json: force JSON.parse on the payload even if the header doesn't contain "typ":"JWT".
  • complete: return an object with the decoded payload and header.

Example

// get the decoded payload ignoring signature, no secretOrPrivateKey needed
var decoded = jwt.decode(token);

// get the decoded payload and header
var decoded = jwt.decode(token, {complete: true});
console.log(decoded.header);
console.log(decoded.payload)

Errors & Codes

Possible thrown errors during verification. Error is the first argument of the verification callback.

TokenExpiredError

Thrown error if the token is expired.

Error object:

  • name: 'TokenExpiredError'
  • message: 'jwt expired'
  • expiredAt: [ExpDate]
jwt.verify(token, 'shhhhh', function(err, decoded) {
  if (err) {
    /*
      err = {
        name: 'TokenExpiredError',
        message: 'jwt expired',
        expiredAt: 1408621000
      }
    */
  }
});

JsonWebTokenError

Error object:

  • name: 'JsonWebTokenError'
  • message:
    • 'invalid token' - the header or payload could not be parsed
    • 'jwt malformed' - the token does not have three components (delimited by a .)
    • 'jwt signature is required'
    • 'invalid signature'
    • 'jwt audience invalid. expected: [OPTIONS AUDIENCE]'
    • 'jwt issuer invalid. expected: [OPTIONS ISSUER]'
    • 'jwt id invalid. expected: [OPTIONS JWT ID]'
    • 'jwt subject invalid. expected: [OPTIONS SUBJECT]'
jwt.verify(token, 'shhhhh', function(err, decoded) {
  if (err) {
    /*
      err = {
        name: 'JsonWebTokenError',
        message: 'jwt malformed'
      }
    */
  }
});

NotBeforeError

Thrown if current time is before the nbf claim.

Error object:

  • name: 'NotBeforeError'
  • message: 'jwt not active'
  • date: 2018-10-04T16:10:44.000Z
jwt.verify(token, 'shhhhh', function(err, decoded) {
  if (err) {
    /*
      err = {
        name: 'NotBeforeError',
        message: 'jwt not active',
        date: 2018-10-04T16:10:44.000Z
      }
    */
  }
});

Algorithms supported

Array of supported algorithms. The following algorithms are currently supported.

| alg Parameter Value | Digital Signature or MAC Algorithm | |---------------------|------------------------------------------------------------------------| | HS256 | HMAC using SHA-256 hash algorithm | | HS384 | HMAC using SHA-384 hash algorithm | | HS512 | HMAC using SHA-512 hash algorithm | | RS256 | RSASSA-PKCS1-v1_5 using SHA-256 hash algorithm | | RS384 | RSASSA-PKCS1-v1_5 using SHA-384 hash algorithm | | RS512 | RSASSA-PKCS1-v1_5 using SHA-512 hash algorithm | | PS256 | RSASSA-PSS using SHA-256 hash algorithm (only node ^6.12.0 OR >=8.0.0) | | PS384 | RSASSA-PSS using SHA-384 hash algorithm (only node ^6.12.0 OR >=8.0.0) | | PS512 | RSASSA-PSS using SHA-512 hash algorithm (only node ^6.12.0 OR >=8.0.0) | | ES256 | ECDSA using P-256 curve and SHA-256 hash algorithm | | ES384 | ECDSA using P-384 curve and SHA-384 hash algorithm | | ES512 | ECDSA using P-521 curve and SHA-512 hash algorithm | | none | No digital signature or MAC value included |

Refreshing JWTs

First of all, we recommend you to think carefully if auto-refreshing a JWT will not introduce any vulnerability in your system.

We are not comfortable including this as part of the library, however, you can take a look at this example to show how this could be accomplished. Apart from that example there are an issue and a pull request to get more knowledge about this topic.

TODO

  • X.509 certificate chain is not checked

Issue Reporting

If you have found a bug or if you have a feature request, please report them at this repository issues section. Please do not report security vulnerabilities on the public GitHub issue tracker. The Responsible Disclosure Program details the procedure for disclosing security issues.

Author

Auth0

License

This project is licensed under the MIT license. See the LICENSE file for more info.