uuid vs nanoid vs shortid vs randomstring
Unique ID Generation Libraries Comparison
1 Year
uuidnanoidshortidrandomstringSimilar Packages:
What's Unique ID Generation Libraries?

Unique ID generation libraries are essential tools in web development for creating identifiers that are unique across various contexts, such as database entries, session identifiers, and more. These libraries provide developers with the ability to generate IDs that are not only unique but also optimized for different use cases, including performance, length, and security. The choice of library can significantly affect the efficiency and reliability of applications, especially in scenarios requiring high concurrency and scalability.

Package Weekly Downloads Trend
Github Stars Ranking
Stat Detail
Package
Downloads
Stars
Size
Issues
Publish
License
uuid142,916,97014,880133 kB02 months agoMIT
nanoid57,611,65725,42612.1 kB324 days agoMIT
shortid850,9845,73421.7 kB163 months agoMIT
randomstring662,21152316.6 kB23 months agoMIT
Feature Comparison: uuid vs nanoid vs shortid vs randomstring

ID Length and Format

  • uuid:

    UUIDs are standardized 36-character strings that include hyphens. They provide a high level of uniqueness but are longer than other options, which may impact performance in storage and transmission.

  • nanoid:

    Nanoid generates IDs that are customizable in length, typically shorter than UUIDs, making them more efficient for storage and transmission. The default length is 21 characters, which provides a high level of uniqueness.

  • shortid:

    Shortid produces short, unique IDs that are typically 7-14 characters long. These IDs are designed to be URL-friendly and easy to read, making them suitable for user-facing applications.

  • randomstring:

    Randomstring allows for complete customization of the string length and character set, giving developers the freedom to create IDs that meet specific requirements, such as including special characters or being of a certain length.

Performance

  • uuid:

    UUID generation can be slower compared to other libraries due to the complexity of ensuring global uniqueness. However, it is still performant enough for most applications, especially when uniqueness is paramount.

  • nanoid:

    Nanoid is designed for performance, generating IDs faster than most alternatives. Its algorithm is optimized for speed, making it suitable for high-load applications where many IDs are generated in a short time.

  • shortid:

    Shortid is relatively fast but can experience performance degradation under heavy load due to its reliance on a counter for uniqueness. It is suitable for applications with moderate ID generation needs.

  • randomstring:

    Randomstring's performance is adequate for most use cases but may not match the speed of Nanoid or UUID in scenarios requiring high-frequency ID generation. It is best used for generating occasional random strings rather than in high-performance contexts.

Collision Resistance

  • uuid:

    UUIDs are designed to be globally unique, and the chances of collision are extremely low due to their structure and generation method, making them ideal for distributed systems.

  • nanoid:

    Nanoid uses a cryptographically strong random generator, which significantly reduces the risk of ID collisions, making it highly reliable for applications requiring unique identifiers.

  • shortid:

    Shortid aims to minimize collisions by using a counter and randomization, but it is not as collision-resistant as Nanoid, especially in distributed systems or high-load environments.

  • randomstring:

    Randomstring's collision resistance depends on the length and character set used. While it can generate unique strings, it may not be as robust as Nanoid or UUID in high-volume scenarios.

Ease of Use

  • uuid:

    UUID has a straightforward API for generating unique identifiers, but the length and format may require additional handling in applications where shorter IDs are preferred.

  • nanoid:

    Nanoid has a simple API that makes it easy to integrate and use in applications. Its straightforward syntax allows developers to generate unique IDs with minimal effort.

  • shortid:

    Shortid is easy to use and provides a simple interface for generating short IDs. Its focus on human-readable IDs makes it particularly appealing for user-facing applications.

  • randomstring:

    Randomstring offers a flexible API that allows for easy customization of string generation. Its simplicity makes it user-friendly, especially for developers needing specific formats.

Use Cases

  • uuid:

    UUID is the go-to choice for applications needing globally unique identifiers, such as in distributed databases, microservices, or systems where uniqueness across different environments is critical.

  • nanoid:

    Nanoid is ideal for scenarios requiring compact, unique IDs, such as database keys, session tokens, and any application where storage efficiency is important.

  • shortid:

    Shortid is perfect for generating user-friendly IDs for URLs, short links, or any application where readability is important, but it may not be suitable for high-volume unique ID generation.

  • randomstring:

    Randomstring is best suited for generating random strings for passwords, tokens, or any use case where customization is key, but it may not be optimal for unique IDs.

How to Choose: uuid vs nanoid vs shortid vs randomstring
  • uuid:

    Use UUID if you need universally unique identifiers that conform to established standards (RFC 4122). UUIDs are ideal for distributed systems where uniqueness across different databases or services is critical, but they are longer and can be less efficient in terms of storage.

  • nanoid:

    Choose Nanoid if you need a fast and compact unique ID generator that produces shorter IDs while maintaining a high level of uniqueness. It is particularly useful for applications where storage space is a concern, and you want to avoid collisions.

  • shortid:

    Select Shortid if you want to create short, non-sequential unique IDs that are URL-friendly. It is a good choice for applications needing human-readable IDs, but it may not be as performant as Nanoid in high-load scenarios.

  • randomstring:

    Opt for Randomstring if you require a simple and flexible solution for generating random strings of various lengths and character sets. It is suitable for cases where you need customizable strings, such as passwords or tokens, but may not be as performant as other options for unique IDs.

README for uuid

uuid CI Browser

For the creation of RFC9562 (formerly RFC4122) UUIDs

[!NOTE] uuid@11 is now available: See the CHANGELOG for details. TL;DR:

  • TypeScript support is now included (remove @types/uuid from your dependencies)
  • Subtle changes to how the options arg is interpreted for v1(), v6(), and v7(). See details
  • Binary UUIDs are now Uint8Arrays. (May impact callers of parse(), stringify(), or that pass an option#buf argument to v1()-v7().)

Quickstart

1. Install

npm install uuid

2. Create a UUID

ESM-syntax (must use named exports):

import { v4 as uuidv4 } from 'uuid';
uuidv4(); // ⇨ '9b1deb4d-3b7d-4bad-9bdd-2b0d7b3dcb6d'

... CommonJS:

const { v4: uuidv4 } = require('uuid');
uuidv4(); // ⇨ '1b9d6bcd-bbfd-4b2d-9b5d-ab8dfbbd4bed'

For timestamp UUIDs, namespace UUIDs, and other options read on ...

API Summary

| | | | | --- | --- | --- | | uuid.NIL | The nil UUID string (all zeros) | New in uuid@8.3 | | uuid.MAX | The max UUID string (all ones) | New in uuid@9.1 | | uuid.parse() | Convert UUID string to array of bytes | New in uuid@8.3 | | uuid.stringify() | Convert array of bytes to UUID string | New in uuid@8.3 | | uuid.v1() | Create a version 1 (timestamp) UUID | | | uuid.v1ToV6() | Create a version 6 UUID from a version 1 UUID | New in uuid@10 | | uuid.v3() | Create a version 3 (namespace w/ MD5) UUID | | | uuid.v4() | Create a version 4 (random) UUID | | | uuid.v5() | Create a version 5 (namespace w/ SHA-1) UUID | | | uuid.v6() | Create a version 6 (timestamp, reordered) UUID | New in uuid@10 | | uuid.v6ToV1() | Create a version 1 UUID from a version 6 UUID | New in uuid@10 | | uuid.v7() | Create a version 7 (Unix Epoch time-based) UUID | New in uuid@10 | | ~~uuid.v8()~~ | "Intentionally left blank" | | | uuid.validate() | Test a string to see if it is a valid UUID | New in uuid@8.3 | | uuid.version() | Detect RFC version of a UUID | New in uuid@8.3 |

API

uuid.NIL

The nil UUID string (all zeros).

Example:

import { NIL as NIL_UUID } from 'uuid';

NIL_UUID; // ⇨ '00000000-0000-0000-0000-000000000000'

uuid.MAX

The max UUID string (all ones).

Example:

import { MAX as MAX_UUID } from 'uuid';

MAX_UUID; // ⇨ 'ffffffff-ffff-ffff-ffff-ffffffffffff'

uuid.parse(str)

Convert UUID string to array of bytes

| | | | --------- | ---------------------------------------- | | str | A valid UUID String | | returns | Uint8Array[16] | | throws | TypeError if str is not a valid UUID |

[!NOTE] Ordering of values in the byte arrays used by parse() and stringify() follows the left ↠ right order of hex-pairs in UUID strings. As shown in the example below.

Example:

import { parse as uuidParse } from 'uuid';

// Parse a UUID
uuidParse('6ec0bd7f-11c0-43da-975e-2a8ad9ebae0b'); // ⇨
// Uint8Array(16) [
//   110, 192, 189, 127,  17,
//   192,  67, 218, 151,  94,
//    42, 138, 217, 235, 174,
//    11
// ]

uuid.stringify(arr[, offset])

Convert array of bytes to UUID string

| | | | -------------- | ---------------------------------------------------------------------------- | | arr | Array-like collection of 16 values (starting from offset) between 0-255. | | [offset = 0] | Number Starting index in the Array | | returns | String | | throws | TypeError if a valid UUID string cannot be generated |

[!NOTE] Ordering of values in the byte arrays used by parse() and stringify() follows the left ↠ right order of hex-pairs in UUID strings. As shown in the example below.

Example:

import { stringify as uuidStringify } from 'uuid';

const uuidBytes = Uint8Array.of(
  0x6e,
  0xc0,
  0xbd,
  0x7f,
  0x11,
  0xc0,
  0x43,
  0xda,
  0x97,
  0x5e,
  0x2a,
  0x8a,
  0xd9,
  0xeb,
  0xae,
  0x0b
);

uuidStringify(uuidBytes); // ⇨ '6ec0bd7f-11c0-43da-975e-2a8ad9ebae0b'

uuid.v1([options[, buffer[, offset]]])

Create an RFC version 1 (timestamp) UUID

| | | | --- | --- | | [options] | Object with one or more of the following properties: | | [options.node = (random) ] | RFC "node" field as an Array[6] of byte values (per 4.1.6) | | [options.clockseq = (random)] | RFC "clock sequence" as a Number between 0 - 0x3fff | | [options.msecs = (current time)] | RFC "timestamp" field (Number of milliseconds, unix epoch) | | [options.nsecs = 0] | RFC "timestamp" field (Number of nanoseconds to add to msecs, should be 0-10,000) | | [options.random = (random)] | Array of 16 random bytes (0-255) used to generate other fields, above | | [options.rng] | Alternative to options.random, a Function that returns an Array of 16 random bytes (0-255) | | [buffer] | Uint8Array or Uint8Array subtype (e.g. Node.js Buffer). If provided, binary UUID is written into the array, starting at offset | | [offset = 0] | Number Index to start writing UUID bytes in buffer | | returns | UUID String if no buffer is specified, otherwise returns buffer | | throws | Error if more than 10M UUIDs/sec are requested |

[!NOTE] The default node id (the last 12 digits in the UUID) is generated once, randomly, on process startup, and then remains unchanged for the duration of the process.

[!NOTE] options.random and options.rng are only meaningful on the very first call to v1(), where they may be passed to initialize the internal node and clockseq fields.

Example:

import { v1 as uuidv1 } from 'uuid';

uuidv1(); // ⇨ '2c5ea4c0-4067-11e9-9bdd-2b0d7b3dcb6d'

Example using options:

import { v1 as uuidv1 } from 'uuid';

const options = {
  node: Uint8Array.of(0x01, 0x23, 0x45, 0x67, 0x89, 0xab),
  clockseq: 0x1234,
  msecs: new Date('2011-11-01').getTime(),
  nsecs: 5678,
};
uuidv1(options); // ⇨ '710b962e-041c-11e1-9234-0123456789ab'

uuid.v1ToV6(uuid)

Convert a UUID from version 1 to version 6

import { v1ToV6 } from 'uuid';

v1ToV6('92f62d9e-22c4-11ef-97e9-325096b39f47'); // ⇨ '1ef22c49-2f62-6d9e-97e9-325096b39f47'

uuid.v3(name, namespace[, buffer[, offset]])

Create an RFC version 3 (namespace w/ MD5) UUID

API is identical to v5(), but uses "v3" instead.

[!IMPORTANT] Per the RFC, "If backward compatibility is not an issue, SHA-1 [Version 5] is preferred."

uuid.v4([options[, buffer[, offset]]])

Create an RFC version 4 (random) UUID

| | | | --- | --- | | [options] | Object with one or more of the following properties: | | [options.random] | Array of 16 random bytes (0-255) | | [options.rng] | Alternative to options.random, a Function that returns an Array of 16 random bytes (0-255) | | [buffer] | Uint8Array or Uint8Array subtype (e.g. Node.js Buffer). If provided, binary UUID is written into the array, starting at offset | | [offset = 0] | Number Index to start writing UUID bytes in buffer | | returns | UUID String if no buffer is specified, otherwise returns buffer |

Example:

import { v4 as uuidv4 } from 'uuid';

uuidv4(); // ⇨ '9b1deb4d-3b7d-4bad-9bdd-2b0d7b3dcb6d'

Example using predefined random values:

import { v4 as uuidv4 } from 'uuid';

const v4options = {
  random: Uint8Array.of(
    0x10,
    0x91,
    0x56,
    0xbe,
    0xc4,
    0xfb,
    0xc1,
    0xea,
    0x71,
    0xb4,
    0xef,
    0xe1,
    0x67,
    0x1c,
    0x58,
    0x36
  ),
};
uuidv4(v4options); // ⇨ '109156be-c4fb-41ea-b1b4-efe1671c5836'

uuid.v5(name, namespace[, buffer[, offset]])

Create an RFC version 5 (namespace w/ SHA-1) UUID

| | | | --- | --- | | name | String \| Array | | namespace | String \| Array[16] Namespace UUID | | [buffer] | Uint8Array or Uint8Array subtype (e.g. Node.js Buffer). If provided, binary UUID is written into the array, starting at offset | | [offset = 0] | Number Index to start writing UUID bytes in buffer | | returns | UUID String if no buffer is specified, otherwise returns buffer |

[!NOTE] The RFC DNS and URL namespaces are available as v5.DNS and v5.URL.

Example with custom namespace:

import { v5 as uuidv5 } from 'uuid';

// Define a custom namespace.  Readers, create your own using something like
// https://www.uuidgenerator.net/
const MY_NAMESPACE = '1b671a64-40d5-491e-99b0-da01ff1f3341';

uuidv5('Hello, World!', MY_NAMESPACE); // ⇨ '630eb68f-e0fa-5ecc-887a-7c7a62614681'

Example with RFC URL namespace:

import { v5 as uuidv5 } from 'uuid';

uuidv5('https://www.w3.org/', uuidv5.URL); // ⇨ 'c106a26a-21bb-5538-8bf2-57095d1976c1'

uuid.v6([options[, buffer[, offset]]])

Create an RFC version 6 (timestamp, reordered) UUID

This method takes the same arguments as uuid.v1().

import { v6 as uuidv6 } from 'uuid';

uuidv6(); // ⇨ '1e940672-c5ea-64c0-9b5d-ab8dfbbd4bed'

Example using options:

import { v6 as uuidv6 } from 'uuid';

const options = {
  node: [0x01, 0x23, 0x45, 0x67, 0x89, 0xab],
  clockseq: 0x1234,
  msecs: new Date('2011-11-01').getTime(),
  nsecs: 5678,
};
uuidv6(options); // ⇨ '1e1041c7-10b9-662e-9234-0123456789ab'

uuid.v6ToV1(uuid)

Convert a UUID from version 6 to version 1

import { v6ToV1 } from 'uuid';

v6ToV1('1ef22c49-2f62-6d9e-97e9-325096b39f47'); // ⇨ '92f62d9e-22c4-11ef-97e9-325096b39f47'

uuid.v7([options[, buffer[, offset]]])

Create an RFC version 7 (random) UUID

| | | | --- | --- | | [options] | Object with one or more of the following properties: | | [options.msecs = (current time)] | RFC "timestamp" field (Number of milliseconds, unix epoch) | | [options.random = (random)] | Array of 16 random bytes (0-255) used to generate other fields, above | | [options.rng] | Alternative to options.random, a Function that returns an Array of 16 random bytes (0-255) | | [options.seq = (random)] | 32-bit sequence Number between 0 - 0xffffffff. This may be provided to help ensure uniqueness for UUIDs generated within the same millisecond time interval. Default = random value. | | [buffer] | Uint8Array or Uint8Array subtype (e.g. Node.js Buffer). If provided, binary UUID is written into the array, starting at offset | | [offset = 0] | Number Index to start writing UUID bytes in buffer | | returns | UUID String if no buffer is specified, otherwise returns buffer |

Example:

import { v7 as uuidv7 } from 'uuid';

uuidv7(); // ⇨ '01695553-c90c-705a-b56d-778dfbbd4bed'

~~uuid.v8()~~

"Intentionally left blank"

[!NOTE] Version 8 (experimental) UUIDs are "for experimental or vendor-specific use cases". The RFC does not define a creation algorithm for them, which is why this package does not offer a v8() method. The validate() and version() methods do work with such UUIDs, however.

uuid.validate(str)

Test a string to see if it is a valid UUID

| | | | --------- | --------------------------------------------------- | | str | String to validate | | returns | true if string is a valid UUID, false otherwise |

Example:

import { validate as uuidValidate } from 'uuid';

uuidValidate('not a UUID'); // ⇨ false
uuidValidate('6ec0bd7f-11c0-43da-975e-2a8ad9ebae0b'); // ⇨ true

Using validate and version together it is possible to do per-version validation, e.g. validate for only v4 UUIds.

import { version as uuidVersion } from 'uuid';
import { validate as uuidValidate } from 'uuid';

function uuidValidateV4(uuid) {
  return uuidValidate(uuid) && uuidVersion(uuid) === 4;
}

const v1Uuid = 'd9428888-122b-11e1-b85c-61cd3cbb3210';
const v4Uuid = '109156be-c4fb-41ea-b1b4-efe1671c5836';

uuidValidateV4(v4Uuid); // ⇨ true
uuidValidateV4(v1Uuid); // ⇨ false

uuid.version(str)

Detect RFC version of a UUID

| | | | --------- | ---------------------------------------- | | str | A valid UUID String | | returns | Number The RFC version of the UUID | | throws | TypeError if str is not a valid UUID |

Example:

import { version as uuidVersion } from 'uuid';

uuidVersion('45637ec4-c85f-11ea-87d0-0242ac130003'); // ⇨ 1
uuidVersion('6ec0bd7f-11c0-43da-975e-2a8ad9ebae0b'); // ⇨ 4

[!NOTE] This method returns 0 for the NIL UUID, and 15 for the MAX UUID.

Command Line

UUIDs can be generated from the command line using uuid.

$ npx uuid
ddeb27fb-d9a0-4624-be4d-4615062daed4

The default is to generate version 4 UUIDS, however the other versions are supported. Type uuid --help for details:

$ npx uuid --help

Usage:
  uuid
  uuid v1
  uuid v3 <name> <namespace uuid>
  uuid v4
  uuid v5 <name> <namespace uuid>
  uuid v7
  uuid --help

Note: <namespace uuid> may be "URL" or "DNS" to use the corresponding UUIDs
defined by RFC9562

options Handling for Timestamp UUIDs

Prior to uuid@11, it was possible for options state to interfere with the internal state used to ensure uniqueness of timestamp-based UUIDs (the v1(), v6(), and v7() methods). Starting with uuid@11, this issue has been addressed by using the presence of the options argument as a flag to select between two possible behaviors:

  • Without options: Internal state is utilized to improve UUID uniqueness.
  • With options: Internal state is NOT used and, instead, appropriate defaults are applied as needed.

Support

Browsers: uuid builds are tested against the latest version of desktop Chrome, Safari, Firefox, and Edge. Mobile versions of these same browsers are expected to work but aren't currently tested.

Node: uuid builds are tested against node (LTS releases), plus one prior. E.g. node@18 is in maintainence mode, and node@22 is the current LTS release. So uuid supports node@16-node@22.

Typescript: TS versions released within the past two years are supported. source

Known issues

"getRandomValues() not supported"

This error occurs in environments where the standard crypto.getRandomValues() API is not supported. This issue can be resolved by adding an appropriate polyfill:

React Native / Expo

  1. Install react-native-get-random-values
  2. Import it before uuid. Since uuid might also appear as a transitive dependency of some other imports it's safest to just import react-native-get-random-values as the very first thing in your entry point:
import 'react-native-get-random-values';
import { v4 as uuidv4 } from 'uuid';

Markdown generated from README_js.md by